Between knowing and teaching: obstacles to understanding fractions in teacher education

Autores

DOI:

https://doi.org/10.46551/emd.v9n18a18

Palavras-chave:

Epistemological Obstacles, Didactical Obstacles, Fractions

Resumo

This article investigates learning obstacles faced by prospective teachers when solving fraction tasks, focusing on didactical and epistemological challenges. The analysis is based on classroom observations in a university-level teacher education course, examining students’ strategies and emerging difficulties. Among the findings, we highlight the prevalence of mechanically applying previously taught methods, difficulties in reasoning without algorithms, and conceptual errors related to the inappropriate use of benchmarks. These difficulties are discussed within the framework of the Theory of Didactical Situations, with some classified as epistemological obstacles and others as didactical ones. The study also identifies ambiguous cases, suggesting the need to incorporate concepts such as the didactical contract in future analyses.

Downloads

Não há dados estatísticos.

Referências

ALFONSO-GOLDFARB, Ana Maria; FERRAZ, Márcia Helena Mendes; BELTRAN, Maria Helena Roxo. A historiografia contemporânea e as ciências da matéria: uma longa rota cheia de percalços. In: PEREIRA, Ana Leonor; PITA, João Rui. (Coord.). Rotas da natureza: cientistas, viagens, expedições, instituições. Coimbra: Imprensa da Universidade de Coimbra, 2006, p. 107-111.

BACHELARD, Gaston. The formation of the scientific mind: a contribution to a psychoanalysis of objective knowledge. Translated by Mary McAllester Jones. Manchester: Clinamen Press, 2002.

BECKMANN, Sybilla. Mathematics for elementary teachers with activities. New York: Pearson, 2018.

BERLINGHOFF, William P.; GOUVÊA, Fernando Q. Math through the ages: a gentle history for teachers and others. Farmington: Oxton House Publishers, 2002.

BONOTTO, Cinzia. Origini concettuali di errori che si riscontrano nel confrontare numeri decimali e frazioni. L'Insegnamento della Matematica e delle Scienze Integrate, v. 16, n. 1, p. 9-45, 1993.

BROUSSEAU, Guy. Les obstacles épistémologiques et les problemes en Mathematiques. Recherches en Didactique des Mathématiques, v. 4, n. 2, p. 165-198, 1983.

BROUSSEAU, Guy. Theory of Didactical Situations in Mathematics: Didactique des Mathématiques, 1970-1990. Edited and translated by BALACHEFF, Nicolas; COOPER, Martin; SUTHERLAND, Rosamund; WARFIELD, Virginia.Dordrecht: Kluwer Academic Publishers, 2002.

CORTINA, José Luis; VIŠŇOVSKÁ, Jana; ZÚÑIGA, Claudia. Equipartition as a didactical obstacle in fraction instruction. Acta Didactica Universitatis Comenianae Mathematics, v. 14, n. 1, p. 1-18, 2014.

COSTA, Letícia Vieira Oliveira. Números reais no Ensino Fundamental: alguns obstáculos epistemológicos. 2009. 368f. Disseretção (Mestrado em Educação). Universidade de São Paulo. São Paulo. https://doi.org/10.11606/D.48.2009.tde-30082010-085854

DUROUX, Alain. La valeur absolue: difficultés majeures pour une notion mineure. Petit x, 3, p. 43-67, 1983.

DUVAL, Raymond. A cognitive analysis of problems of comprehension in a learning of Mathematics. Educational Studies in Mathematics, v. 61, n. 1-2, p. 103-131, 2006.

FERREIRA, Edinalva Rodrigues. Ensino de frações na Educação de Jovens e Adultos: obstáculos didáticos e epistemológicos. 2014. 184f. Dissertação (Mestrado em Educação Matemática). Pontifícia Universidade Católica de São Paulo. São Paulo.

GATTINARA, Enrico Castelli. The relationship between History and Epistemology in Georges Canguilhem and Gaston Bachelard. Transversal, n. 4, p. 14-26, 2018. https://doi.org/10.24117/2526-2270.2018.i4.04

GRAS, Regis; TOTOHASINA, André. Chronologie et causalité, conceptions sources d'obstacles épistémologiques a la notion de probabilité conditionnelle. Recherches en Didactique des Mathématiques, v. 15, n. 1, p. 49-95, 1995.

HAMDAN, Noora; GUNDERSON, Elizabeth A. The number line is a critical spatial-numerical representation: Evidence from a fraction intervention. Developmental Psychology, v. 53, n. 3, p. 587-596, 2017. https://doi.org/10.1037/dev0000252

HANSEN, Nicole; JORDAN, Nancy C.; RODRIGUES, Jessica. Identifying learning difficulties with fractions: a longitudinal study of student growth from third through sixth grade. Contemporary Educational Psychology, v. 50, p. 45-59, 2017. https://doi.org/10.1016/j.cedpsych.2015.11.002

HARIYANI, Mimi; HERAWATI, Herawati; ANDRIANI, Melly; SUHERMAN, Suherman. Students’ learning obstacles in understanding of fraction concept during online learning. Journal of Didactic Mathematics, 4, n. 2, p. 58-64, 2023. https://doi.org/10.34007/jdm.v4i2.1849

HARIYANI, Mimi; HERMAN, Tatang; SURYADI, Didi; PRABAWANTO, Sufyani. Exploration of student learning obstacles in solving fraction problems in Elementary School. International Journal of Educational Methodology, v. 8, n. 3, p. 505-515, 2022. https://doi.org/10.12973/ijem.8.3.505

HASSAYOUNE, Slimane; RAHIM, Kouki. La difficile genèse de la pensée algébrique: ruptures et obstacles épistémologiques. In: Actes du Espace Mathematique Francophone. Algérie, 2015, p. 386-402.

HECHT, Steven A.; VAGI, Kevin J. Patterns of strengths and weaknesses in children’s knowledge about fractions. Journal of Experimental Child Psychology, 111, n. 2, p. 212-229, 2012. https://doi.org/10.1016/j.jecp.2011.08.012

JAHN, Ana Paula; SILVA, Maria José Ferreira; SILVA, Maria Célia Leme; CAMPOS, Tânia Maria Mendonça. Lógica das equivalências. In: Anais da 22ª Reunião Anual da Associação Nacional de Pós-Graduação e Pesquisa em Educação. Caxambu, 1999, p. 1-18.

JOSÉ, Wander Alberto; VIZOLLI, Idemar. Obstáculos epistemológicos inerentes ao conceito de fração: um estado do conhecimento. Rematec, v. 17, p. 48-66, 2022. https://doi.org/10.37084/REMATEC.1980-3141.2022.n.p48-66.id499

JOSEPH, George Gheverghese. The crest of the peacock: non-european roots of Mathematics. 3 ed. Princeton: Princeton University Press, 2011.

KAMINSKI, Jennifer A. Effects of visual representations on fraction arithmetic learning. In: Proceedings of the 40th Annual Meeting of the Cognitive Science Society. Madison, 2018, p. 1-6.

KERSLAKE, Daphne. Fractions: children's strategies and errors. A report of the strategies and errors in Secondary Mathematics Project. Windsor, Berkshire. 1986.

KIEREN, Thomas E.; BEHR, Merlyn J. Fractions: rational numbers. In: In: CARSS, Marjorie. (Ed.). Proceedings of the Fifth International Congress on Mathematical Education. Boston: Birkhausen, 1986, 179-180.

MAXWELL, Joseph A. Literature reviews of, and for, educational research: a commentary on Boote and Beile's “Scholars before researchers”. Educational Researcher, v. 35, n. 9, p. 28-31, 2006. https://doi.org/10.3102/0013189X035009028

NAMKUNG, Jessica; FUCHS, Lynn. Remediating difficulty with fractions for students with Mathematics learning difficulties. Learning Disabilities, v. 24, n. 2, p. 36-48, 2019. https://doi.org/10.18666/LDMJ-2019-V24-I2-9902

NI, Yujing; ZHOU, Yong-Di. Teaching and learning fraction and rational numbers: the origins and implications of whole number bias. Educational Psychologist, 40, n. 1, p. 27-52, 2005. https://doi.org/10.1207/s15326985ep4001_3

PITKETHLY, Anne; HUNTING, Robert. A review of recent research in the area of initial fraction concepts. Educational Studies in Mathematics, 30, n. 1, p. 5-38, 1996. https://doi.org/10.1007/BF00163751

SANTOS, João; OLIVEIRA, Naralina; SANTOS, Marcílio. Aprendizagem de limites e continuidade em funções de uma variável real: um olhar para os obstáculos epistemológicos. Quadrante, 33, n. 1, p. 72-96, 2024. https://doi.org/10.48489/quadrante.33083

SERTOLI, Giuseppe. Epistemologia e storia delle Scienze in Georges Canguilhem. Nuova Corrente, v. 30, n. 90-91, p. 101-171, 1983.

SIDNEY, Pooja G.; THOMPSON, Clarissa A.; RIVERA, Ferdinand D. Number lines, but not area models, support children’s accuracy and conceptual models of fraction division. Contemporary Educational Psychology, v. 58, p. 288-298, 2019. https://doi.org/10.1016/j.cedpsych.2019.03.011

SIERPINSKA, Anna. Obstacles épistémologiques relatifs à la notion de limite. Recherches en Didactique des Mathématiques, 6, n. 1, p. 5-67, 1985.

SINGHA, Parmjit; HOONA, Teoh Sian; NASIR, Nurul Akmal Md; CHEONG, Tau Han; RASID, Syazwani Mr; HOONG, Joseph Boon Zik. Obstacles faced by students in making sense of fractions. The European Journal of Social and Behavioural Sciences, v. 30, n. 1, p. 34-51, 2021. https://doi.org/10.15405/ejsbs.287

SPAGNOLO, Filippo. Obstacles épistémologiques: le postulat de eudoxe-archimede. 1995. 170f. Thèse (Doctorat en Didactique des Mathématiques). Université Bordeaux-I. Bordeaux.

SUN, Xinyang; ZENG, Qingtao. The history of fractions and teaching insights. Journal of Education and Educational Research, 3, n. 1, p. 93-96, 2023. https://doi.org/10.54097/jeer.v3i1.8199

UNAENAH, Een; SURYADI, Didi; TURMUDI. Students’ learning obstacles on fractions in elementary school. In: Proceedings of the International Conference on Education 2022. Amsterdam: Atlantis Press, 2023, p. 148-157. https://doi.org/10.2991/978-2-38476-020-6_16

VAN HOOF, Jo; VERSCHAFFEL, Lieven; VAN DOOREN, Wim. Inappropriately applying natural number properties in rational number tasks: characterizing the development of the natural number bias through Primary and Secondary Education. Educational Studies in Mathematics, 90, n. 1, p. 39-56, 2015. http://dx.doi.org/10.1007/s10649-015-9613-3

Arquivos adicionais

Publicado

10-08-2025

Como Citar

DIAS, Ana Lúcia Braz; SHEIKHNAVASSI, Tony Salvatore. Between knowing and teaching: obstacles to understanding fractions in teacher education. Educação Matemática Debate, Montes Claros, v. 9, n. 18, p. 1–21, 2025. DOI: 10.46551/emd.v9n18a18. Disponível em: https://www.periodicos.unimontes.br/index.php/emd/article/view/8172. Acesso em: 5 dez. 2025.

Edição

Seção

Artigos