Aproximação à distribuição Poisson incorporando o uso de tecnologia na abordagem Ontosemiótica

Autores

DOI:

https://doi.org/10.46551/emd.e202112

Palavras-chave:

Distribuição de Poisson, Experiência de Ensino, Utilização de Software, Ensino Superior

Resumo

Este artigo apresenta os resultados da implementação de um projeto de ensino da distribuição de Poisson com o apoio do software Fathom. O experimento foi desenvolvido em três etapas e contou com a participação de 20 estudantes de Engenharia que cursavam a disciplina de Métodos Estatísticos em uma universidade chilena. Para analisar as produções dos participantes, utilizou-se a análise de conteúdo e alguns elementos teóricos da abordagem ontosemiótica. Os participantes ficaram motivados com a utilização da ferramenta tecnológica, pois facilitou o entendimento das principais características da distribuição de Poisson sugeridas pelos resultados obtidos no questionário final.

Downloads

Não há dados estatísticos.

Biografia do Autor

Gabriela Cisternas, Universidad de la Serena

 

   

Jocelyn Díaz-Pallauta, Universidad de Granada

 

   

Danilo Díaz-Levicoy, Universidad Católica del Maule

 

     

Referências

ALVARADO, Hugo; GALINDO, Maritza; RETAMAL, Lidia. Comprensión de la distribución muestral mediante configuraciones didácticas y su implicación en la inferencia estadística. Enseñanza de las Ciencias, v. 31, n. 2, p. 75-91, mayo/ago. 2013.

ARROYO, Indira; BRAVO, Luis; LLINAS, Humberto; MUÑOZ, Fabián. Distribuciones Poisson y Gamma: una discreta y continua relación. Prospect, Bogotá, v. 12, n. 1, p.99-107, ene./jun. 2014.

BATANERO, Carmen. Didáctica de la Estadística. Granada: Grupo de Investigación en Educación Estadística, 2001.

BATANERO, Carmen; BEGUÉ, Nuria; GEA, María Magdalena; ROA, Rafael. El muestreo: una idea estocástica fundamental. Suma, n. 90, p. 41-47, mar. 2019.

BATANERO, Carmen; BOROVCNICK, Manfred. Statistics and probability in high school. Rotterdam: Sense Publishers, 2016.

BATANERO, Carmen; TAUBER, Liliana Mabel; SÁNCHEZ, Victoria. Students’ reasoning about the normal distribution. In: BEN-ZVI, Dani; GARFIELD, Joan. (Ed.). The challenge of developing statistical literacy, reasoning and thinking. Dordrecht: Springer, 2004, p. 257-276.

BEN-ZVI, Dani; BAKKER, Arthur; MAKAR, Katie. Learning to reason from simples. Educational Studies in Mathematics, v. 88, n. 3, p. 291-303, mar. 2015.

BIEHLER, Rolf; BEN-ZVI, Dani; BAKKER, Arthur; MAKER, Katie. Technological for enhancing statistical reasoning at the school level. In: CLEMENTS, McKenzie Alexander; BISHOP, Alan Paul; KEITEL, Christine; KILPATRICK, Jeremy; LEUNG, Frederick K. S. Third International Handbook of Mathematics Education. New York: Springer, 2013, p. 643-689.

CANTORAL, Ricardo; RÍOS, Wendolyne; REYES, Daniela; CANTORAL, Enrique; BARRIOS, Eleany; FALLAS, Rodolfo; BONILLA, Antonio. Matemática Educativa, transversalidad y Covid-19. Revista Latinoamericana de Investigación en Matemática Educativa, Ciudad de México, v. 23, n. 1, p. 1-19, 2020.

CRUZ-RAMÍREZ, Miguel; ÁLVAREZ-REYES, Salvador Eladio; PÉREZ-SANTOS, Francisco Javier. Sobre la enseñanza de la Distribución de Poisson en carreras de Ingeniería. Bolema, Rio Claro, v. 28, n. 50, p. 1117-1134, dez. 2014.

EICHLER, Andreas; VOGEL, Markus. Three approaches for modelling situations with randomness. En: CHERNOFF, Egan J.; SRIRAMAN, Bharath. (Ed.). Probabilistic thinking: presenting plural perspectives. Heidelberg: Springer, 2014, p. 75-99.

FINZER, William. Fathom dynamic data software. Emeryville: Key Curriculum Press. 2007.

FONT, Vicenç; GODINO, Juan Díaz; GALLARDO, Jesús. The emergence of objects from mathematical practices. Educational Studies in Mathematics, v. 82, n. 1, p. 97-124, 2013.

FRANKLIN, Christine; KADER, Gary; MEWBORN, Denise; MORENO, Jerry; PECK, Roxy; PERRY, Mike; SCHEAFFER, Richard. Guidelines for assessment and instruction in statistics education (GAISE) report: A Pre-K- 12 curriculum framework. Alexandria, American Statistical Association, 2005.

GARCÍA-GARCÍA, Jaime; FERNÁNDEZ, Nicolás; IMILPÁN, Isaac. Desarrollo del razonamiento probabilístico en profesores de Matemáticas mediante simulación computacional. Paradigma, Maracay, v. 41, n.2, p. 404-426, ago. 2020.

GARFIELD, Joan; BEN-ZVI, Dani; CHANCE, Beth; MEDINA, Elsa; ROSETH, Cary; ZIEFFLER, Andrew. Developing students’ Statistical reasoning: connecting research and teaching practice. Dordrecht: Springer, 2008.

GEA, María Magdalena; PARRAGUEZ, Rafael; BATANERO, Carmen. Comprensión de la probabilidad clásica y frecuencial por futuros profesores. En: INVESTIGACIÓN EN EDUCACIÓN MATEMÁTICA XXII, 2018, Zaragoza. Actas del XXI SIEM. Zaragoza: SEIEM, 2017, p. 267-276.

GODINO, Juan Díaz; BATANERO, Carmen; FONT, Vicenç. The onto-semiotic approach to research in Mathematics Education. ZDM Mathematics Education, v. 39, n. 1-2, p. 127-135, jan. 2007.

GODINO, Juan Díaz; BATANERO, Carmen; FONT, Vicenç. The onto-semiotic approach: implications for the prescriptive character of didactics. For the Learning of Mathematics, New Westminster, v. 39, n. 1, p. 38-43, 2019.

GODINO, Juan Díaz; BURGOS, María; GEA, María Magdalena. Analysing theories of meaning in mathematics education from the onto-semiotic approach. International Journal of Mathematical Education in Science and Technology, v. 52, p. 1-28, mar. 2021.

GODINO, Juan Díaz; CONTRERAS, Angel; FONT, Vicenç. Análisis de procesos de instrucción basado en el enfoque ontológico-semiótico de la cognición matemática. Recherches en Didactiques Mathematiques, Grenoble, v. 26, n. 1, p. 39-88, 2006.

GODINO, Juan. Indicadores de la idoneidad didáctica de procesos de enseñanza y aprendizaje de las Matemáticas. Cuadernos de Investigación y Formación en Educación Matemática, Montes de Oca, v. 8, n. 11, p. 111-132, dic. 2013.

IZCARA, Simón. Manual de investigación cualitativa. México: Fontamara, 2016.

MUÑIZ-RODRÍGUEZ, Laura; RODRÍGUEZ-MUÑIZ, Luis. J.; ALSINA, Ángel. Deficits in the statistical and probabilistic literacy of citizens: Effects in a world in crisis. Mathematics, v. 8, n. 11, p. 1-20, 2020.

PRATT, Dave; DAVIES, Neville; CONNOR, Doreen. The role of technology in teaching and learning Statistics. En: BATANERO, Carmen; BURRILL, Gail; READING, Chris (Ed.), Teaching statistics in school mathematics. Challenges for teaching and teacher education. A joint ICMI/IASE. New York: Springer, 2011, p. 97-107.

RAMÍREZ, Greivin. Formas de razonamiento que muestran estudiantes de maestría de Matemática Educativa sobre la distribución normal mediante problemas de simulación en Fathom. Revista Electrónica de Investigación en Educación en Ciencias, Buenos Aires, v. 3, n. 1, p. 10-23, ene./jul. 2008.

ROLDÁN-LÓPEZ, Antonio Francisco; BATANERO, Carmen; ALVAREZ-ARROYO, Rocío. Conflictos semióticos relacionados con el intervalo de confianza en estudiantes de Bachillerato e Ingeniería. Educação Matemática Debate, Montes Claros, v. 4, n. 10, p. 1-25, 2020.

SALINAS, Jesús; VALDEZ, Julio; SALINAS-HERNÁNDEZ, Ulises. Un acercamiento a la metodología lesson study para la enseñanza de la distribución normal. En: INVESTIGACIÓN EN EDUCACIÓN MATEMÁTICA XXII, 2018, Gijón. Actas del XXII SIEM. Granada: SEIEM, 2018, p. 525-534.

SAMPIERI, Roberto. Metodología de la investigación: las rutas cuantitativa, cualitativa y mixta. México: McGraw Hill. 2018.

ZACKS, Shelemyahu. Parametric statistical inference: basic theory and modern approaches. Oxford: Pergamon Press. 2014.

Arquivos adicionais

Publicado

2021-05-11 — Atualizado em 2021-05-21

Versões

Edição

Seção

Dossiê — Integração das Tecnologias Digitais na Educação Matemática