Gabiroba and pequi add nutritional and functional value to sweet breads without altering their sensory acceptance
DOI:
https://doi.org/10.46551/ruc.v27n2a8Keywords:
Pães doce, Frutos do Cerrado, Alimentação Escolar, Análise MultivariadaAbstract
Objectives: The incorporation of pulp and flour from Brazilian native fruits into flour-based products, such as bread, emerges as a promising alternative to enhance their nutritional and functional value, expanding consumption and relevance in school meals. Methods: This study evaluated the effect of replacing wheat flour and water with pequi husk flour, gabiroba pulp flour, and gabiroba pulp in sweet bread formulations through chemical, physical and sensory analyses. Results: The substitutions resulted in significant changes (p<0.05) in color variables [L*, C* (crumb and crust) and ºhue (crumb)], attributed to non-enzymatic browning and the characteristics of the ingredients used. Texture properties were also affected, with increased hardness and chewiness. Nutritionally, the breads showed reduced moisture and increased lipid and ash content, along with higher levels of total phenolic compounds, vitamin C, and antioxidant activity. Major phenolic compounds identified included catechin, gallic acid, and resveratrol. The formulations achieved positive sensory evaluations, classified as "liked" and "loved," with no significant impact (p>0.05) on consumer acceptance. These results highlight the potential of implementing these breads in school meals, contributing to the nutritional guidelines of the Brazilian School Feeding Program (PNAE). Conclusion: The substitutions enhanced the functional properties of sweet breads, enriching them with phenolic compounds and vitamin C, despite alterations in color and texture. This development promotes the consumption of Cerrado fruits, valorises native ingredients, and supports a more nutritious and sustainable diet.
Downloads
References
STRASSBURG, B.B.N. et al. Moment of truth for the Cerrado hotspot. Nature Ecology & Evolution, v. 1, n. 99, 2017. Disponível em: <https://doi.org/10.1038/s41559-017-0099>.
TEIXEIRA, N. et al. Edible fruits from Brazilian biodiversity: A review on their sensorial characteristics versus bioactivity as tool to select research. Food Research International, v. 119, p. 325–48, 2019. Disponível em: <https://doi.org/10.1016/j.foodres.2019.01.058>.
ALVES, A.M. et al. Caracterização física e química, fenólicos totais e atividade antioxidante da polpa e resíduo de gabiroba. Revista Brasileira de Fruticultura, v. 35, n. 3, p. 837–44, 2013. Disponível em: <https://doi.org/10.1590/S0100-29452013000300021>.
PEREIRA, M.C. et al. Characterization and antioxidant potential of brazilian fruits from the Myrtaceae family. Journal of Agricultural and Food Chemistry, v. 60, n. 12, p. 3061–7, 2012. Disponível em: <https://doi.org/10.1021/jf205263f>.
LEÃO, D.P. et al. Physicochemical characterization, antioxidant capacity, total phenolic and proanthocyanidin content of flours prepared from pequi (Caryocar brasilense Camb.) fruit by-products. Food Chemistry, v. 225, p. 146–53, 2017. Disponível em: <https://doi.org/10.1016/j.foodchem.2017.01.027>.
LEÃO, D.P. et al. Potential of pequi (Caryocar brasiliense Camb.) peels as sources of highly esterified pectins obtained by microwave assisted extraction. LWT - Food Science and Technology, v. 87, p. 575–80, 2018. Disponível em: <https://doi.org/10.1016/j.lwt.2017.09.037>.
LARA, C.B., BUNDY, D., DRAKE, L., GELLI, A. State of school feeding worldwide 2013. Rome, Italy: World Food Programme; 2013.
LOCATELLI, N.T., CANELLA, D.S., BANDONI, D.H. Positive influence of school meals on food consumption in Brazil. Nutrition, v. 53, p. 140–4, 2018. Disponível em: <https://doi.org/10.1016/j.nut.2018.02.011>.
FRANÇA, F.C.O. et al. School meals’ centesimal and mineral composition and their nutritional value for Brazilian children. Journal of Trace Elements in Medicine and Biology, v. 48, p. 97–104, 2018. Disponível em: <https://doi.org/10.1016/j.temb.2018.03.013>.
SOARES, P. et al. The effect of new purchase criteria on food procurement for the Brazilian school feeding program. Appetite, v. 108, p.288–94, 2017. Disponível em: <https://doi.org/10.1016/j.appet.2016.10.016>.
SCHNEIDER, S., THIES, V.F., GRISA, C., BELIK, W. Chapter Three - Potential of public purchases as markets for family farming: An analysis of Brazilian School Feeding Program between 2011 and 2014. _____In: Advances in Food Security and Sustainability, p. 69–95, 2016. Disponível em: <https://doi.org/10.1016/bs.af2s.2016.09.003>.
GARZÓN, R. et al. Diversity among maize populations from Spain and the United States for dough rheology and gluten-free breadmaking performance. International Journal of Food Science & Technology, v. 52, n. 4, p. 1000–8, 2017. Disponível em: <https://doi.org/10.1111/ijfs.13364>.
JEKLE, M., FUCHS, A., BECKER, T. A normalized texture profile analysis approach to evaluate firming kinetics of bread crumbs independent from its initial texture. Journal of Cereal Science, v. 81, p. 147–52, 2018. Disponível em: <https://doi.org/10.1016/j.jcs.2018.04.007>.
AOAC - Association of Official Analytical Chemists. Official methods of analysis. 19th ed. Gaithersburg, 2012.
ZOU, M.L. et al. Accuracy of the Atwater factors and related food energy conversion factors with low-fat, high-fiber diets when energy intake is reduced spontaneously. The American Journal of Clinical Nutrition, v. 86, n. 6, p.1649–56, 2007. Disponível em: <https://doi.org/10.1093/ajcn/86.5.1649>.
LARRAURI, J.A., RUPÉREZ, P., SAURA-CALIXTO, F. Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. Journal of Agricultural and Food Chemistry, v. 45, p. 1390–3, 1997. Disponível em: <https://doi.org/10.1021/jf960282f>.
WATERHOUSE, A.L. Determination of total phenolics. Current Protocols in Food Analytical Chemistry, v. 11, n. 1, p. 130–43, 2002.
STROHECKER, R., HENNING, H.M. Analisis de vitaminas: metodos comprobados. Madrid: Paz Montolvo, 428 p. 1967.
RE, R. et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, v. 26, n. 9-10, p. 1231–7, 1999. Disponível em: <https://doi.org/10.1016/s0891-5849(98)00315-3>.
BRAND-WILLIAMS, W., CUVELIER, M.E., BERSET, C. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, v. 28, p. 25–30, 1995. Disponível em: <https://doi.org/10.1016/S0023-6438(95)80008-5>.
MILLER, H.E. A simplified method for the evaluation of antioxidant. Journal of the American Oil Chemists´ Society, v. 48, n. 2, p. 91, 1971. Disponível em: <https://doi.org/10.1007/BF02635693>.
PULIDO, R., BRAVO, L., SAURA-CALIXTO, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. Journal of Agricultural and Food Chemistry, v. 48, p. 3396–402, 2000. Disponível em: <https://doi.org/10.1021/jf9913458>.
RAMAIYA, S.D. et al. Sugars, ascorbic acid, total phenolic content and total antioxidant activity in passion fruit (Passiflora) cultivars. Journal of the Science of Food and Agriculture, v. 93, n. 5, p. 1198–205, 2013. Disponível em: <https://doi.org/10.1002/jsfa.5876>.
LIMA, J.P. et al. First evaluation of the antimutagenic effect of mangaba fruit in vivo and its phenolic profile identification. Food Research International, v. 75, p. 216–224, 2015. Disponível em: <https://doi.org/10.1016/j.foodres.2015.05.045>.
RIBANI, M. et al. Validação em métodos cromatográficos e eletroforéticos. Química Nova, v. 27, n. 5, p. 771–80, 2004. Disponível em: <https://doi.org/10.1590/S0100-40422004000500017>.
STONE, H., BLEIBAUM, R., THOMAS, H.A. Sensory evaluation practices. Press A, editor. New York, 81–115 p. 2012.
FERREIRA, D.F. SISVAR: A computer statistical analysis system. Ciência e Agrotecnologia, v. 35, n. 6, p. 1039–42, 2011. Disponível em: <https://doi.org/10.1590/S1413-70542011000600001>.
PINHEIRO, A.C.M., NUNES, C.A., VIETORIS, V. Sensomaker: A tool for sensorial characterization of food products. Ciência e Agrotecnologia, v. 37, n. 3, p. 199–201, 2013.
SHIBAO, J., BASTOS, D.H.M. Maillard reaction products in foods: Implications for human health. Revista de Nutrição, v. 24, n. 6, p. 895–904, 2011. Disponível em: <https://doi.org/10.1590/S1415-52732011000600010>.
ANGIOLONI, A., COLLAR, C. Physicochemical and nutritional properties of reduced-caloric density high-fibre breads. LWT - Food Science and Technology, v. 44, n. 3, p. 747–58, 2011. Disponível em: <https://doi.org/10.1016/j.lwt.2010.09.008>.
SHITTU, T.A., RAJI, A.O., SANNI, L.O. Bread from compositive cassava-wheat flor: Effect of backing time and temperature on some physical properties of bread loaf. Food Research International, v. 40, n. 2, p. 280-290, 2007. Disponível em: <https://doi.org/10.1016/j.foodres.2006.10.012>.
HO, L.H., AZZI, N.A.A., AZAHARI, B. Physico-chemical characteristics and sensory evaluation of wheat bread partially substituted with banana (Musa acuminata X balbisiana cv. Awak) pseudo-stem flour. Food Chemistry, v. 139, n. 1–4, p. 532–9, 2013. Disponível em: <https://doi.org/10.1016/j.foodchem.2013.01.039>.
MIKULEC, A. et al. Cistus extract as a valuable component for enriching wheat bread. LWT - Food Scince and Technology, v. 118, n. 2, p. 108713, 2019. Disponível em: <https://doi.org/10.1016/j.lwt.2019.108713>.
BOZ, H., KARAOĞLU, M.M. Improving the quality of whole wheat bread by using various plant origin materials. Czech Journal of Food Science, v. 31, n. 5, p. 457–66, 2013. Disponível em: <https://doi.org/10.17221/410/2012-CJFS>.
TSATSARAGKOU, K., GOUNAROPOULOS, G., MANDALA, I. Development of gluten free bread containing carob flour and resistant starch. LWT - Food Science and Technology, v. 58, n. 1, p. 124–9, 2014. Disponível em: <https://doi.org/10.1016/j.lwt.2014.02.043>.
ZAMBELLI, R.A. et al. Effect of açaí powder and chitosan incorporaton on bread quality. International Journal of Food Engineering, v. 3, n. 2, p. 89–94, 2017. Disponível em: <https://doi.org/10.18178/ijfe.3.2.89-94>.
TURFANI, V. et al. Technological, nutritional and functional properties of wheat bread enriched with lentil or carob flours. LWT - Food Science and Technology, v. 78, n. 6, p. 361–6, 2016. Disponível em: <https://doi.org/10.1016/j.lwt.2016.12.030>.
GÓMEZ, M. et al. Effect of dietary fibre on dough rheology and bread quality. European Food Research Technology, v. 216, n. 1, p. 51–6, 2003. Disponível em: <https://doi.org/10.1007/s00217-002-0632-9>.
FEILI, R. et al. Physical and sensory analysis of high fiber bread incorporated with jackfruit rind flour. Food Science and Technology, v. 1, n. 2, p. 30–6, 2013. Disponível em: <https://doi.org/10.13189/fst/2013.010203>.
SIQUEIRA, B. dos S. et al. Effect of soaking on the nutritional quality of pequi (Caryocar brasiliense Camb.) peel flour. Food Science and Technology, v. 33, n. 3, p. 500–6, 2013. Disponível em: <https://doi.org/10.1590/S0101-20612013005000081>.
COUTO, E.M. Utilização da farinha da casca de pequi (Caryocar brasiliense Camb.) na elaboração de pão de forma. 121f. Dissertação (Mestrado em Ciência dos Alimentos) Universidade Federal de Lavras, 2007.
SILVA, M.R. et al. Caracterização química de frutos nativos do cerrado. Ciência Rural, v. 38, n. 6, p. 1790–3, 2008. Disponível em: <https://doi.org/10.1590/S0103-84782008000600051>.
United States Department of Agriculture (USDA) (2011). Dietary Reference Intakes: The Essential Guide to Nutrient Requirements. Retrieved from https://fnic.nal.usda.gov/sites/fnic.nal.usda.gov/files/uploads/recommended_intakes_individuals.pdf. Acessado dia: 30 de dezembro de 2019.
NUNES, J.C. et al. Effect of drying method on volatile compounds, phenolic profile and antioxidant capacity of guava powders. Food Chemistry, v. 197, p. 881–90, 2016. Disponível em: <http://dx.doi.org/10.1016/j.foodchem.2015.11.050>.
ROESLER, R. et al. Antioxidant activity of Caryocar brasiliense (pequi) and characterization of components by electrospray ionization mass spectrometry. Food Chemistry, v. 110, n. 3, p. 711–7, 2008. Disponível em: <https://doi.org/10.1016/j.foodchem.2008.02.048>.
VIEIRA, D.P.F. Farinha da casca de pequi: Caracterização físico-química, perfil de fenólicos, antioxidantes e avaliação do potencial como fonte de pectina via extração por micro-ondas. 130f. Tese (Doutorado em Ciência dos Alimentos) - Universidade Federal de Minas Gerais - Belo Horizonte, Minas Gerais. 2017.
ROCHA, L.B et al. Gallic acid as the major antioxidant in pequi (Caryocar brasiliense Camb.) fruit peel. Revista Brasileira de Plantas Medicinais, v. 17, n. 4, p. 592–8, 2015. Disponível em: <https://doi.org/10.1590/1983-084X/14_062>.
MALTA, L.G. et al. Assessment of antioxidant and antiproliferative activities and the identification of phenolic compounds of exotic Brazilian fruits. Food Research International, v. 53, n. 1, p. 417–25, 2013. Disponível em: <https://doi.org/10.1016/j.foodres.2013.04.024>.
ALVES, A.M. et al. Ascorbic acid and phenolic contents, antioxidant capacity and flavonoids composition of Brazilian Savannah native fruits. Food Science and Technology, v. 37, n. 4, p. 564–9, 2017. Disponível em: <https://doi.org/10.1590/1678-457X.26716>.
SILVA, C.A.A., FONSECA, G.G. Brazilian savannah fruits: Characteristics, properties and potential applications. Food Science and Biotechnology, v. 25, n. 5, p. 1225–32, 2016. Disponível em: <https://doi.org/10.1007/s10068-016-0195-3>.
MUNIZ, V.M., CARVALHO, A.T. O Programa Nacional de Alimentação Escolar em município do estado da Paraíba: Um estudo sob o olhar dos benefíciários do Programa. Revista de Nutrição, v. 20, n. 3, p. 285–96, 2007. Disponível em:<https://doi.org/10.1590/S1415-52732007000300007>.






