In Vitro Germination of Nicotiana glauca: Unlocking Its Biotechnological Potential

Autores

DOI:

https://doi.org/10.46551/ruc.v27n2a5

Palavras-chave:

Temperature, Sorbitol, Wild tobacco, Storage, Anabasine

Resumo

Objectives: The aim was to optimize temperature storage protocols and in vitro culture conditions to improve germination rates and plant growth. Method: Seeds were stored at three temperatures (room temperature, 6°C, and -4°C) and germinated with different concentrations of sorbitol. Germination rates, plant height, and biomass were assessed. Results: showed that low-temperature storage at 6°C, combined with sorbitol treatment, significantly enhanced seed viability and germination rates. This suggests that sorbitol can mitigate osmotic stress. In contrast, storage at -4°C decreased viability, highlighting the importance of temperature control. Conclusions: This study provides valuable knowledge into the factors affecting N. glauca seed storage and germination. The findings contribute to developing efficient propagation protocols and the potential for biotechnological applications of this species.

Downloads

Não há dados estatísticos.

Biografia do Autor

Thais Teixeira Valério Caetano, Universidade Federal de Lavras

Graduada em Bioquímica pela Universidade Federal de São João Del-Rei em 2018. Atualmente, discente do curso de mestrado em fisiologia vegetal pela Universidade Federal de Lavras. Atua no Laboratorio Central de Biologia Molecular, sendo orientada pelo professor Luciano Paiva. Tem experiência na área de Bioquímica, com ênfase em Biotecnologia Vegetal

Mateus Moreira Bernardes, Universidade Federal de Lavras

Possui formação em Técnico em Informática no Ensino Médio Integrado pelo Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG - 2013), graduação em Bioquímica pela Universidade Federal de São João del Rei (UFSJ - 2018), onde fez parte do Laboratório de Biotecnologia Vegetal. Durante esse período, realizou pesquisas em cultura de tecidos vegetais, estudando a propagação in vitro de plantas dos gêneros Cannabis, Hypericum e Nicotiana. É mestre em Agronomia/Fisiologia Vegetal (2021) pela Universidade Federal de Lavras (UFLA) e atualmente cursa o doutorado em Fisiologia Vegetal, também na UFLA. Atua em linhas de pesquisa relacionadas a estresses abióticos na germinação e estabelecimento de plantas, crescimento e desenvolvimento vegetal, bioquímica e metabolismo primário.

Lilian dos Reis Ronzani, Universidade Federal de Lavras

Mestranda no programa de Pós-Graduação em Botânica Aplicada pela Universidade Federal de Lavras (UFLA), com linha de pesquisa focada em plantas psicoativas com ênfase em biotecnologia vegetal, contemplada com bolsa CAPES. Formada em bacharel em Biotecnologia (2018-2023) pela Universidade Federal de São João del-Rei, unidade de São João del-Rei.Foi bolsista de iniciação científica (PIBITI/CNPq) sobre o tema: Potencial anticitotóxico e antigenotóxica nanopartículas com extrato de Ruta graveolens L.

João Máximo de Siqueira, Universidade Federal de Lavras

Possui graduação em Farmácia pela Universidade Federal de Minas Gerais (1983), mestrado em Química pela Universidade Federal de Minas Gerais (1989) e doutorado em Química pela Universidade Federal de Minas Gerais (1999) e, Pos-Doutorado em Química Orgânica, na Universidad de Cadiz, Cadiz, Espanha. Atualmente é professor TITULAR do CAMPUS CENTRO-OESTE DONA LINDU, UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL REI. Tem experiência na área de Farmácia, com ênfase em Farmacognosia, atuando principalmente nos seguintes temas: Plantas Medicinais Nativas do Cerrado, avaliação da qualidade de plantas medicinais comercializadas nos centros urbanos, Fitoquimica (ENFASE EM FARMACOGNOSIA), Estudo Fitoquimico de Annonaceae, Estudo Fitoquimico e Avaliaçao alelopatica visando a busca de substancias potencialmente herbicidas naturais (Química de Produtos Naturais). Professor orientou no curso de Mestrado em Química, UFMS (curso CAPES nivel 4 entre 2000-2007), no Curso de PG em Ciências da Saúde convênio interinstitucional UNB/UFMS/UFG(2005-2010). Orientou no Programa de Doutorado do Curso de Pós-Graduação em Saude e desenvolvimento na região centro-oeste (UFMS, curso CAPES nivel 4) e orientador de mestrado e DOUTORADO no Programa de Pos-Graduação em Ciencias da Saude CCO-Dona Lindu/UFSJ (CAPES nível 4) e colanorador no Programa de Pos graduação em Ciências Farmaceutica da UFSJ (nivel 3). BOLSISTA PRODUTIVIDADE no periodo de 2011-2019. PROFESSOR APOSENTADO

Vanessa Stein, Federal University of Lavras

Possui graduação em Ciências Biológicas pela Universidade Federal de Pelotas (2005), Mestrado em Agronomia/Fisiologia Vegetal pela Universidade Lavras(2006), Doutorado em Agronomia/ Fisiologia Vegetal pela Universidade Federal de Lavras, com período sanduíche na Universidade de Wageningen Capes\Holanda (2009) e Pós-doutorado no Laboratório Central de Biologia Molecular da Universidade Federal de Lavras (2019/2010). Atualmente é Professa na Universidade Federal de Lavras, coordenadora adjunta do Curso de Graduação em Ciências Biológicas - Licenciatura e do Programa de Pós-graduação em Botânica Aplicada. Sua linha de pesquisa que concentra-se na aplicação de técnicas biotecnológicas para otimizar a produção de metabolitos secundários em plantas psicoativas, com ênfase nos canabinoides de Cannabis sativa (conforme autorização dos órgãos competentes) visando principalmente, alternativas para o neuropatias. Coordena o Centro Biotecnológico de Plantas Psicoativo da Ufla em convênio com o INCT-MT0 USP.

Referências

A, Dora; BAH, M.; R, María; D, Sandra; C, Valentina. Anti-inflammatory and antioxidant activities of methanol extracts and alkaloid fractions of four Mexican medicinal plants of Solanaceae. African Journal of Traditional, Complementary and Alternative Medicines, Durban, v. 11, p. 259–267, 2014. DOI: 10.4314/ajtcam.v11i3.36.

AGACKA, M. et al. Viability of Nicotiana spp. seeds stored under ambient temperature. Seed Science and Technology, Zurich, v. 41, p. 474–478, 2013. DOI: https://doi.org/10.15258/sst.2013.41.3.15.

AGACKA, M. et al. Longevity of Nicotiana seeds conserved at low temperatures in ex situ genebanks. Seed Science and Technology, Zurich, v. 42, p. 355–362, 2014. DOI: http://doi.org/10.15258/sst.2014.42.3.05.

AGACKA-MOŁDOCH, M. et al. QTL analysis of seed germination traits in tobacco (Nicotiana tabacum L.). Journal of Applied Genetics, Berlin, v. 62, p. 441–444, 2021. DOI: https://doi.org/10.1007/s13353-021-00623-6.

ALGHAMDI, A. Phytoconstituents screening and antimicrobial activity of the invasive species Nicotiana glauca collected from Al-Baha region of Saudi Arabia. Saudi Journal of Biological Sciences, Riyadh, v. 28, 2020. DOI: 10.1016/j.sjbs.2020.12.034.

AN, J. et al. Transcriptional multiomics reveals the mechanism of seed deterioration in Nicotiana tabacum L. and Oryza sativa L. Journal of Advanced Research, Cairo, v. 42, p. 163–176, 2022. DOI: https://doi.org/10.1016/j.jare.2022.03.009.

ARMIJOS-GONZÁLEZ, Rosa; RAMÓN, Pablo; CUEVA-AGILA, Augusta. Cinchona officinalis L. ex situ conservation by in vitro slow growth and cryopreservation techniques. Plant Cell, Tissue and Organ Culture (PCTOC), Amsterdam, v. 158, n. 1, p. 6, 2024.

ASWATHI, K. P. R. et al. Seed priming of plants aiding in drought stress tolerance and faster recovery: a review. Plant Growth Regulation, The Hague, v. 97, p. 235–253, 2021. DOI: https://doi.org/10.1007/s10725-021-00755-z.

BEWLEY, J.; BLACK, M. Seeds: physiology of development and germination. 3rd ed. New York: Plenum Press, 1994. 445 p.

BOTTGER, G. T.; BOWEN, C. V. Comparative toxicity tests of anabasine, nornicotine, and other related compounds. 1946.

HERBERT, Brain et al. Anabaseine derivatives useful in the treatment of neurodegenerative diseases. National Center for Biotechnology Information. PubChem Patent Summary for WO-2004019943-A1. Available at: https://pubchem.ncbi.nlm.nih.gov/patent/WO-2004019943-A1. Accessed on: Aug. 30, 2002.

Carreno-Quintero, N., et al. (2024). Non‑targeted discovery of high‑value bio‑products in Nicotiana glauca L: A potential renewable plant feedstock. Bioresources and Bioprocessing, 11(12). https://doi.org/10.1186/s40643-023-00726-4

Castorena, J. L., et al. (1987). A fatal poisoning from Nicotiana glauca. Journal of Toxicology: Clinical Toxicology, 25(5), 429-435. https://doi.org/10.3109/15563658708992646

Debnath, M., et al. (2006). Micropropagation: A tool for the production of high-quality plant-based medicines. Current Pharmaceutical Biotechnology, 7, 33-49. https://doi.org/10.2174/138920106775789638

Elkazaz, M., & Fadly, A. G. (2019). A medicament comprising anabasine for treatment of asthma, chest allergy, and atopic dermatitis. WO/2021/028005. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2021028005

Farooq, M., et al. (2020). Influence of seed priming techniques on grain yield and economic returns of bread wheat planted at different spacings. Crop and Pasture Science, 71(8), 725-738. https://doi.org/10.1071/CP20065

Fazili, M. A., Bashir, I., Ahmad, M., et al. (2022). In vitro strategies for the enhancement of secondary metabolite production in plants: A review. Bulletin of the National Research Centre, 46(35). https://doi.org/10.1186/s42269-022-00717-z

Florentine, S. K., et al. (2006). The arid land invasive weed Nicotiana glauca R. Graham (Solanaceae): Population and soil seed bank dynamics, seed germination patterns, and seedling response to flood and drought. Journal of Arid Environments, 66(2), 218-230. https://doi.org/10.1016/j.jaridenv.2005.10.017

Florentine, S. K., et al. (2016). Influence of selected environmental factors on seed germination and seedling survival of the arid zone invasive species tobacco bush (Nicotiana glauca R. Graham). The Rangeland Journal, 38, 417-425. https://doi.org/10.1071/RJ16022

Florentine, S. K., & Westbrooke, M. E. (2005). Invasion of the noxious weed Nicotiana glauca R. Graham after an episodic flooding event in the arid zone of Australia. Journal of Arid Environments, 60(4), 531-545. https://doi.org/10.1016/j.jaridenv.2004.07.015

Furer, V., et al. (2011). Nicotiana glauca (Tree Tobacco) intoxication—Two cases in one family. Journal of Medical Toxicology, 7, 47–51. https://doi.org/10.1007/s13181-010-0102-x

George, E. F. (1993). Plant propagation by tissue culture. Part 1: The technology (2nd ed.). Edington, Wilts, London: Exegetics.

Haider, I., & Rehman, H. (2021). The impact of different seed priming agents and priming durations on stand establishment and biochemical attributes of Stevia rebaudiana Bertoni. Saudi Journal of Biological Sciences, 29, 2210-2218. https://doi.org/10.1016/j.sjbs.2021.11.040

Hesami, M., Daneshvar, M. H., & Lotfi, A. (2017). In vitro shoot proliferation through cotyledonary node and shoot tip explants of Ficus religiosa L. Plant Tissue Culture & Biotechnology, 27, 85–88. https://doi.org/10.3329/ptcb.v27i1.35017

Hussain, M., et al. (2016). Influence of seed priming techniques on the seedling establishment, yield, and quality of hybrid sunflower. International Journal of Agriculture and Biology, 8(1), 14-18. https://doi.org/10.1560-8530/2006/08–1–14–18

Iken, I., et al. (2022). Fatal outcome following the application of Nicotiana glauca L. in the framework of the traditional pharmacopoeia. Toxicologie Analytique et Clinique, 34(1), 10-14. https://doi.org/10.1016/j.toxac.2021.10.002

Jiménez, S., et al. (2013). Physiological, biochemical, and molecular responses in four Prunus rootstocks submitted to drought stress. Tree Physiology, 33, 1061-1075. https://doi.org/10.1093/treephys/tpt074

Juan, L., Pérez-Rodríguez, G., Torrecilla-Guerra, O., Ruiz-Padrón, M., & Martínez-Montero, E. (2013). Dormancy breaking in seeds of species of the Nicotiana genus. Centro Agrícola, 41(1), 53-60.

Khatun, L., et al. (2020). Vernalization and gibberellic acid response in summer onion's (Allium cepa L.) reproductive phases. Tropical Agroecosystems (TAEC), 1(1), 07-14. https://doi.org/10.26480/taec.01.2020.07.14

Lin, S.-I., et al. (2005). Differential regulation of FLOWERING LOCUS C expression by vernalization in cabbage and Arabidopsis. Plant Physiology, 137(3), 1037-1048. https://doi.org/10.1104/pp.104.058974

Lutts, S., et al. (2016). Seed priming: New comprehensive approaches for an old empirical technique. In S. Araujo & A. Balestrazzi (Eds.), New Challenges in Seed Biology - Basic and Translational Research Driving Seed Technology (pp. 1–49). InTech. https://doi.org/10.5772/64420

Mirmazloum, I., et al. (2020). The effects of osmopriming on seed germination and early seedling characteristics of Carum carvi L. Agriculture, 10(94), 1-13. https://doi.org/10.3390/agriculture10040094

Moraes, R. M., et al. (2021). Using micropropagation to develop medicinal plants into crops. Molecules, 26(1752), 1-20. https://doi.org/10.3390/molecules26061752

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Nasr, H. (2014). Ecological and phytochemical studies on Nicotiana glauca from Egypt. Egyptian Journal of Experimental Biology, 10, 87-95.

Hasnain, A., et al. (2022). Plants in vitro propagation with its applications in food, pharmaceuticals, and cosmetic industries: Current scenario and future approaches. Frontiers in Plant Science, 13, 1009395. https://doi.org/10.3389/fpls.2022.1009395

Oba, G. C., et al. (2017). Dormancy of safflower seeds: Effect of storage and cold stratification. Journal of Seed Science, 39(4), 433-439. https://doi.org/10.1590/2317-1545v39n4181244

Ollerton, J., Watts, S., Connerty, S., Lock, J., Parker, L., Wilson, I., Schueller, S., Nattero, J., Cocucci, A., Izhaki, I., Geerts, S., Pauw, A., & Stout, J. (2012). Pollination ecology of the invasive tree tobacco Nicotiana glauca: Comparisons across native and non-native ranges. Journal of Pollination Ecology, 9, 85-95. https://doi.org/10.26786/1920-7603(2012)12

Prashant, S. P., & Bhawana, M. (2024). An update on biotechnological intervention mediated by plant tissue culture to boost secondary metabolite production in medicinal and aromatic plants. Physiologia Plantarum, 176(4), e14400. https://doi.org/10.1111/ppl.14400

Pérez-Jiménez, M., et al. (2021). How carbon source and seedcoat influence the in vitro culture of peach (Prunus persica L. Batsch) immature seeds. HortScience, 56(2), 136-137. https://doi.org/10.21273/HORTSCI15502-20

Pill, W. G. et al. 1991. Germination and Seedling Emergence of Primed Tomato and Asparagus Seeds under Adverse Conditions. HortScience. 26(9):1160-1162.

Pleyerová, I. et al. 2022. Versatile roles of sorbitol in higher plants: luxury resource, effective defender or something else?. Planta. 256:13. https://doi.org/10.1007/s00425-022-03925-z

Raza, A. et al. (2023). Role of phytohormones in regulating cold stress tolerance: Physiological and molecular approaches for developing cold-smart crop plants. Plant Stress. 8: 100152. https://doi.org/10.1016/j.stress.2023.100152

Geneve, Robert L. Impact of temperature on seed dormancy. HortScience, v. 38, n. 3, p. 336-340, 2003.

Silva, T. dos S. et al. 2019. In vitro conservation of Poincianella pyramidalis (Tul.) L.P. Queiroz under minimal growth conditions. Ciência e Agrotecnologia. 43:e014519. http://dx.doi.org/10.1590/1413-7054201943014519

Steenkamp P., Heerden F., Wyk B. Accidental fatal poisoning by Nicotiana glauca: identification of anabasine by high performance liquid chromatography/ photodiode array/mass spectrometry. Forensic Science International. 2002;127:208–217.

Tahaei, A. et al 2016. Seed germination of medicinal plant, fennel (Foeniculum vulgare Mill), as affected by different priming techniques. Appl Biochem Biotechnol. 180, 26–40. https://doi.org/10.1007/s12010-016-2082-z

Twaij, B. M. et al. 2020. Trends in the Use of Tissue Culture, Applications and Future Aspects. Int. J. Plant Biol. 11(1), 8385. https://doi.org/10.4081/pb.2020.8385

Umarani, R. et al. 2015. Understanding poor storage potential of recalcitrant seeds. Current Science. 108 (11): 2023-2034.

Ventura, L. et al. 2012. Understanding the molecular pathways associated with seed vigor. Plant Physiology and Biochemistry. 60: 196 - 206. http://dx.doi.org/10.1016/j.plaphy.2012.07.031

Yang, Bin et al. Physiological characteristics of cold stratification on seed dormancy release in rice. Plant Growth Regulation, v. 89, p. 131-141, 2019.

Yaseen, M. et al. 2012. Review: role of carbon sources for in vitro plant growth and development. Molecular Biology Reports. 40(4). 2837-2849. https://doi.org/10.1007/s11033-012-2299-z

Yumbla-Orbes, M. et al. 2017. Influence of seed vernalization on production, growth and development of lisianthus. Semina: Ciências Agrárias. 39 (6): 2325-2336. https://doi.org/10.5433/1679-0359.2018v39n6p2325

Zawieja, P., Kornprobst, J.-M. and Métais, P. 2012, 3-(2,4-Dimethoxybenzylidene)-anabaseine: A promising candidate drug for Alzheimer's disease?. Geriatrics & Gerontology International, 12: 365-371. https://doi.org/10.1111/j.1447-0594.2011.00827.

Zou Haoyang, Ye Haiqing, Kamaraj Rajamanikkam, Zhang Tiehua, Zhang Jie, Pavek Petr. A review on pharmacological activities and synergistic effect of quercetin with small molecule agents, Phytomedicine, Volume 92, 2021, 153736, ISSN 0944-7113, https://doi.org/10.1016/j.phymed.2021.153736

Pill, W. G., Finch-Savage, W. E., & Phelps, K. (1991). Germination and seedling emergence of primed tomato and asparagus seeds under adverse conditions. HortScience, 26(9), 1160–1162.

Pleyerová, I., Tomášková, I., & Procházková, D. (2022). Versatile roles of sorbitol in higher plants: Luxury resource, effective defender or something else? Planta, 256, 13. https://doi.org/10.1007/s00425-022-03925-z

Raza, A., Razzaq, A., Mehmood, S. S., Zou, X., & Rehman, S. U. (2023). Role of phytohormones in regulating cold stress tolerance: Physiological and molecular approaches for developing cold-smart crop plants. Plant Stress, 8, 100152. https://doi.org/10.1016/j.stress.2023.100152

Geneve, R. L. (2003). Impact of temperature on seed dormancy. HortScience, 38(3), 336–340.

Silva, T. dos S., Gonçalves, E. M., Araújo, M. L., & Queiroz, L. P. (2019). In vitro conservation of Poincianella pyramidalis (Tul.) L.P. Queiroz under minimal growth conditions. Ciência e Agrotecnologia, 43, e014519. http://dx.doi.org/10.1590/1413-7054201943014519

Steenkamp, P., van Heerden, F. R., & van Wyk, B.-E. (2002). Accidental fatal poisoning by Nicotiana glauca: Identification of anabasine by high-performance liquid chromatography/photodiode array/mass spectrometry. Forensic Science International, 127, 208–217.

Tahaei, A., Bahmanyar, M. A., & Zarei, A. (2016). Seed germination of medicinal plant, fennel (Foeniculum vulgare Mill), as affected by different priming techniques. Applied Biochemistry and Biotechnology, 180, 26–40. https://doi.org/10.1007/s12010-016-2082-z

Twaij, B. M., Ahmed, K. F., & Al-Hadid, K. M. (2020). Trends in the use of tissue culture, applications and future aspects. International Journal of Plant Biology, 11(1), 8385. https://doi.org/10.4081/pb.2020.8385

Umarani, R., Sathya, R., & Kumar, S. (2015). Understanding poor storage potential of recalcitrant seeds. Current Science, 108(11), 2023–2034.

Ventura, L., Dona, M., & Macovei, A. (2012). Understanding the molecular pathways associated with seed vigor. Plant Physiology and Biochemistry, 60, 196–206. http://dx.doi.org/10.1016/j.plaphy.2012.07.031

Yang, B., Huang, J., Xu, C., & Hu, Y. (2019). Physiological characteristics of cold stratification on seed dormancy release in rice. Plant Growth Regulation, 89, 131–141.

Yaseen, M., Ahmad, T., Sablok, G., & Standardi, A. (2012). Review: Role of carbon sources for in vitro plant growth and development. Molecular Biology Reports, 40(4), 2837–2849. https://doi.org/10.1007/s11033-012-2299-z

Yumbla-Orbes, M., Valencia, D., Andrade, E., & Ramírez, F. (2017). Influence of seed vernalization on production, growth, and development of lisianthus. Semina: Ciências Agrárias, 39(6), 2325–2336. https://doi.org/10.5433/1679-0359.2018v39n6p2325

Zawieja, P., Kornprobst, J.-M., & Métais, P. (2012). 3-(2,4-Dimethoxybenzylidene)-anabaseine: A promising candidate drug for Alzheimer's disease? Geriatrics & Gerontology International, 12, 365–371. https://doi.org/10.1111/j.1447-0594.2011.00827

Zou, H., Ye, H., Kamaraj, R., Zhang, T., Zhang, J., & Pavek, P. (2021). A review on pharmacological activities and synergistic effect of quercetin with small molecule agents. Phytomedicine, 92, 153736. https://doi.org/10.1016/j.phymed.2021.153736

Downloads

Publicado

2025-08-18

Como Citar

TEIXEIRA VALÉRIO CAETANO, Thais; MOREIRA BERNARDES, Mateus; DOS REIS RONZANI, Lilian; MÁXIMO DE SIQUEIRA, João; STEIN, Vanessa. In Vitro Germination of Nicotiana glauca: Unlocking Its Biotechnological Potential. Revista Unimontes Científica, [S. l.], v. 27, n. 2, 2025. DOI: 10.46551/ruc.v27n2a5. Disponível em: https://www.periodicos.unimontes.br/index.php/unicientifica/article/view/8590. Acesso em: 15 jan. 2026.

Edição

Seção

Artigos Originais