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Abstract 

Objective: To conduct a systematic review of the literature describing male mammals' 

reproductive and sexual parameters exposed to the biocide TBT. Method: A formal computer-

assisted search was performed independently by two authors using five online databases and 

keywords. A manual search of the reference list of the articles found for relevant original 

articles was also used. We initially identified potentially eligible publications related to the 

topic of interest through this procedure. The last systematic search resulted in adequate data on 

TBT toxicity in the mammalian male reproductive tract. Results: Decreases in testicular, 

epididymal, prostate and seminal vesicle weights were observed at higher TBT ranges. 

Decreases in serum testosterone levels were reported in some studies, with some histological 

changes in the surveyed tissues and decreased transcriptional expressions of steroidogenic 
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enzymes. Notably, there were significant reductions in sperm count and motility and increased 

abnormalities. Conclusions: Further studies are needed to elucidate the precise manner of 

TBT's deleterious mechanisms of action on the spermatogenesis process. Therefore, a 

comprehensive survey of TBT levels in food and water sources should also be conducted better 

to protect susceptible populations from potentially deleterious reproduction effects. 

Keywords: Tributyltin; Spermatogenesis; Sperm; Gametogenesis; Male reproductive system. 

INTRODUCTION 

Tributyltin (TBT) is part of the class of organotin biocide compounds containing a (n-

C4H9)3Sn-X group. It is mainly used as a defocusing agent in paints to coat structures exposed 

to the aquatic environment, such as ships, oil platforms, pleasure boats, and water pipes(1,2). 

TBT can also be used as impregnation material in prints and textiles, wood preservation, cooling 

water disinfection, fungicide, and polyvinyl chloride (PVC) heat stabilizer(3,4). TBT toxicity 

exceeds its intended target and its bioaccumulation affects the environment through the 

leaching of paint by wastewater, oil platforms, boats and ships(1). 

TBT residue was detected in fish(5) and human blood(6,7), indicating that human 

contamination may occur through food intake. Absorption through dermal contact and 

inhalation is also reported among the population occupationally exposed to the biocide(8). 

 The widespread pollution of seawater and coastal sediment area by TBT in conjunction 

with its lipophilicity, ionic properties, and persistence have raised concerns about its 

bioaccumulation and biomagnification in food chains and adverse effects on human health and 

the environment(9,10). Data on toxicity levels in mollusks, commonly found in the aquatic 

environment, led to the banning of TBT use as anti-fouling paint by some agencies(11,12). 

Although such usage is now under strict legislation, it remains a widespread environmental 

contaminant(13,14,15) still being detected in water, sediment, and urban runoff, generating unease 

about possible impacts on estuaries, freshwater, and coastal areas(16,17,18). 

TBT is an endocrine disruptor which compromises reproductive capacity and sexual 

development in many species(19). The best known adverse effect caused by TBT is imposex, 

which occurs in neogastropod females and is characterized by the development of male sex 

organs, such as penis and vas deferens, overlapping with other female organs(11,20). Data indicate 

that this organotin acts on the male reproductive system, decreasing sperm parameters (sperm 
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density, count, and viability)(21), delaying sexual development(22), reducing testicular size(23) and 

inhibiting the aromatase enzyme(24). 

Aromatase inhibition is a particularly relevant mechanism of action of TBT, given that 

estrogen hormones are essential for typical male and female reproductive development(25). The 

hormonal balance between estrogens and androgens depends on the activity and availability of 

steroid synthesizing enzymes, mainly cytochrome (CYP) P450, responsible for the production 

of estrogen through the aromatization of androgens. It is proposed that much of the reproductive 

toxicity of organotin compounds is due to the inhibition of this aromatase enzyme(22). 

Nishikawa et al.(26) reports that TBT is a high-affinity ligand of the retinoid X receptor 

(RXR) and peroxisome proliferator-activated receptor (PPARɣ) playing an essential role in 

gastropod-imposex development. In addition, TBT exposure blocks the cellular function of 

Leydig and Sertoli cells through negative regulation of androgen receptor and estrogen 

receptor(27). 

The toxicity of TBT in the aquatic environment, its bioaccumulation, as well as 

alterations in the female reproductive system are well documented(28,29,30,31); however, there are 

limited data on its effects on relevant environmental concentrations in male vertebrates. In view 

of these findings, the aim of this systematic review was at evaluating the possible deleterious 

effects of TBT on the male reproductive system of mammals, such as changes in the weight of 

reproductive organs, serum concentration of hormones, gene and protein expression, as well as 

sperm parameters. 

METHODS 

A systematic review was conducted using the following question: What are the effects 

of tributyltin on the reproductive tract of male animals belonging to the Mammalia class? 

Initially, a formal computer-assisted search was conducted independently by two 

authors (LSG, TJM), in the period from April to August 2020, using five online databases - 

Medical Literature Analysis and Retrieval System Online (MEDLINE), Latin American and 

Caribbean Literature in Health Sciences (LILACS), Web of Science, SCOPUS, and Cochrane 

- using the keywords: tributyltin; TBT; gametogenesis; spermatogenesis and male reproductive 

system. 
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The search for unpublished or unindexed studies in the literature (referred to as "grey 

literature") included the following websites: Agency for Healthcare Research and Quality 

(https://www.ahrq.gov/), Google Scholar (http://scholar.google.com/), Grey Literature Report 

from New York Academy of Medicine (http://www.greylit.org/), and World Health 

Organization – WHO (http://www.who.int/).  

A cross-reference search was performed to locate possible relevant papers that were not 

eventually found in the electronic databases. Date limits were not applied in the search strategy. 

In order to trace the publications, Boolean operators, represented by the connecting terms AND 

and OR were used with the descriptors. The entire strategic flow of the aforementioned survey 

constituted the final set of original studies selected to proceed to the subsequent steps of this 

review. 

By associating the aforementioned descriptors, we initially identified 862 potentially 

eligible publications which seemed to be related to the topic of interest. In the first stage of the 

research, these possible abstracts were classified after a screening using the inclusion criteria: 

written in English and selected according to the search terms. Exclusion criteria were: abstract 

in a language other than English, articles that were in duplicate from the searched databases, 

case reports, other systematic or bibliographic reviews and articles not fully available online. 

After analyzing the title and abstract of each article, those which met the criteria were 

considered potentially eligible. (Step 1) 

In the second step, the 199 abstracts selected in Step 1 were retrieved for another 

screening. These articles were fully analyzed in order to shortlist  those which should be 

included in this systematic review. Publications that, although contemplating the descriptors, 

did not analyze the parameters in the reproductive tract of male animals were excluded. (Step 

2)  

In the third and final phase, the 93 shortlisted articles were again screened using the 

inclusion criteria: direct treatment in male mammals (in vivo) or in male cell culture (in vitro). 

Exclusion criteria were: another Animalia class, direct treatment in females, or research during 

embryonic development (Step 3). The systematic search resulted in 26 publications with 

adequate data on TBT toxicity in the male reproductive tract of mammals (Figure 1). The 

complete bibliography of accepted and rejected studies is available upon request from the 

corresponding author. 

https://www.ahrq.gov/
http://scholar.google.com/
http://www.greylit.org/
http://www.who.int/
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Data extraction was applied to studies with methodological quality, conducted by one 

evaluator (LSG) and subsequently verified by a second evaluator (TJM). The information 

contained in the selected articles was systematized in a spreadsheet, namely the Excel® for 

Windows® program, according to the objectives of the review and the aforementioned 

eligibility criteria. The following criteria were coded: species studied, sexual parameters 

analyzed, age, identification of the first author and year of publication, as well as the place 

(country of origin) where it was performed (Table 1). 

All the research was based on data from studies published in electronic databases, thus 

not requiring approval by the CEP-CONEP system. This work did not require any type of 

funding, and there were no conflicts of interest in its development.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1.  Flowchart of manuscript selection for review. 

RESULTS 

26 articles used for the confection of this review 

862 citations in Pubmed, LILACS, Web of Science, SCOPUS and Cochrane 

found by electronic search 

 

663 excluded on first pass 

 

Level 1 screening 

Level 2 screening 

199 articles written in English and selected according to the search terms 

 

106 excluded on second pass 

 
93 articles analyzing the male reproductive system 

 

Level 3 screening 

67 excluded on third pass 
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The 26 selected studies date from 2000 to 2018, including countries located on the coast. 

Most were conducted in the Asian continent (03 Korea, 05 China, 05 India, and 08 Japan), and 

one study was conducted simultaneously in two countries (Table 1).  

Table 1: Mammalian species and analyzed parameters obtained from screened articles at the level 

3. 
 

 

Species 

 

Parameters  

 Age Author Country 

Sprague-Dawley 
Seminal vesicle and accessory sex organ weight, 

detached debris and sloughed cells, seminal vesicle 
width and androgen level.  

 

45 days 

 

 

Yu et al., 2003 

 
Korea 

Sprague-Dawley Sperm count and motion kinematic parameters 46 days Yu et al., 2003 Korea 
Sprague-Dawley Activity of 3β-HSD, 17-OHase and 17β-HSD 90 days Mcvey & Cooke, 2003 Canada 

Sprague-Dawley Testis weight and tissue architecture 21, 35 and 50 
days Kuwada et al., 2006 Japan 

Sprague-Dawley 
Serum testosterone levels, LH, FSHR, Leydig cell 

regeneration, mRNA and protein levels of Leydig 

and Sertolli cells and Leydig cell proliferation 
58 days Wu et al., 2017 China 

Wistar 
Organ weight, spermatid and sperm count, 

histopathology, 17β-estradiol concentration, LH 

and testosterone levels 
119 or 91 days Omura et al., 2001 Japan 

Wistar 
Preputial separation completion, weights of 

reproductive organs, testosterone concentration and 
LH 

53 days Grote et al., 2004 Germany 

Wistar 
Organs and body weigh, serum testosterone, 

luteinizing hormone, follicle-stimulating hormone 
concentrations, and epididymal sperm count 

 

12 weeks 

 
Makita et al., 2005 Japan 

Wistar 
p38 and JNK phosphorylation, stress proteins 

(Nrf2, MTand GST) induction and mitochondrial 
depolarization leading to caspase-3 activation 

28 days Mitra et al., 2013 India 

Wistar Leydig cells viability, activity of 3β-HSD and Star 

and testosterone production 5 weeks Mitra et al., 2014 India 

Wistar 
Ability of to reach testicular tissue, impact on BTB 

Permeability, effect on testicular biology 
and tissue architecture  

4-5 weeks Mitra et al., 2017 India 

Wistar Metabolic profile of Sertolli cells 20 days Cardoso et al., 2017 Portugal 

Chinese Kun 

Ming 
Organs and body weight, sperm parameters, 

histopathology of the testis, hormone levels 
(Testosterone, 17β-estradiol),  estrogen receptors 

≈ 60 days Chen et al., 2008 China 

Chinese Kun 
Ming 

Sperm parameters, epididymal function activity of 

acid phosphatase, acrosin and lactate 

dehydrogenase-x 
≈ 70 days Yan et al., 2009 China 

Chinese Kun 

Ming 
Organs and body weight, Serum hormone levels 
(testosterone, 17β-estradiol, LH), testis hormone 

extraction and tissue analysis 
49 or 84 days Si et al., 2010 China 

ICR mice 
Testicular weight, testicular 

sperm head counts, testicular histology and 
testicular total Sn concentration  

9 weeks Kumasaka et al., 2002 Japan 

ICR mice 
Measurement of body and organ weights, 

determination of serum testosterone and estradiol 

concentration, leydig cells- and seminiferous tubule 

apoptosis and testicular gene expressions 

24 days Kim et al., 2008 Korea 

Syrian Hamster 

Body and testis weight, sperm count and 

morphology, testis histology, ApoE expression, 
serum lipid profile, testosterone level, FSHR, and 

steroid hormone receptor expression 
6-7 weeks Kanimozhi et al., 2014 India and 

USA 

Syrian Hamster 
Testis morphology, immunohistochemistry of 

iNOS, 3β-HSD and 17β-HSD, cholesterol transport 
receptor, nuclear receptors, and transcription 

factors 
6-7 weeks Kanimozhi et al., 2017 India 
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Pigs strain LWD  Testosterone production in isolated Leydig cells, 
cAMP level and hormones levels 2 weeks Nakajima et al., 2003 Japan 

Pigs strain LWD  Testosterone production in isolated Leydig cells, 

cAMP level, hormones levels and P450cl7 levels 2 weeks Nakajima et al., 2005 Japan 

Pigs strain LWD  Enzymes involved in testosterone biosynthesis 

and17β-hydroxusteroid dehydrogenase activity 2 weeks  Ohno; Nakajima; Nakajin, 

2005 Japan 

Human prostate 

cancer cell line 

(LNCaP) 

 

Androgenic effects via the activation of AR in 

mammalian cells 
not applicable Yamabe et al., 2000 Japan 

Human prostate 
tissue Human 5-  reductase isoenzymes  not applicable Doering et al., 2002 Germany 

Human prostate 

tissue 
Human 5-  reductase isoenzymes not applicable Lo et al., 2006 Germany 

Human H295R 

cell 

 

Production of steroid hormones and expression of  

steroidogenic genes not applicable Yan et al., 2018 
China 

 

 

Tributyltin administration showed no obvious signs of toxicity, since no mortalities and 

abnormal activities were observed in the animals of any group analyzed. In the study by Grote 

et al. (32), one animal receiving 15 mg TBT/kg body weight died, but no signs of general toxicity 

were observed. Regarding the male reproductive organs, most studies have shown no changes 

in testes weight among the groups treated with TBT over a wide range of doses (33,34,35,32,36,24,37). 

However, a weight decrease was observed at higher TBT dose ranges (38,36,24,37) (Table 2).  

In the work by Omura et al.(39) testes weight decreased significantly in the 5 and 25 

ppm/kg/d TBT groups. In the epididymis, weight decreased significantly in the 5 ppm TBT 

group in the F1 generation in a two-generation study. In addition, the weights of the testis, 

epididymis and ventral prostate of the rats fed in the 125 ppm TBT diet decreased significantly 

compared to the control rats (Table 2). 

TBT chloride treatments caused a dose-dependent decrease in seminal vesicle weights 

and there was significance at doses of 10 and 20 mg TBT chloride/kg body weight compared 

to the control(34) (Table 2). 

Exposure to 0.5 mg TBT/kg body weight led to a statistically significant increase in the 

absolute and relative weights of the epididymis and prostate. On the other hand, exposure to 15 

mg TBT/kg body weight resulted in a statistically significant decrease in the absolute and 

relative weights of the epididymis, prostate, and seminal vesicle compared to control(39) (Table 

2). 

Table 2. Weight changes induced by TBT in the reproductive organs of male mammals 

obtained from screened articles at the level 3. 

Author Dose/concentration Treatment 
duration Testis Epididymis Prostate Seminal 

vesicle 
Vas 

deferens n 
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Wu et al., 

2017 

0.1 mg /kg  NS - - - - 
18 1.0 mg /kg 10 days NS - - - - 

10.0 mg /kg  NS - - - - 

Omura et al., 

2001 

5.0 ppm /kg/d F1 F2 ↓ NS ↓ NS NS NS NS NS - 14 08 
25.0 ppm /kg/d F1 F2 ↓ NS NS NS NS ↓ NS NS - 16 13 
125.0 ppm /kg/d F1 F2 ↓ ↓ ↓ ↓ ↓ ↓ NS NS - 16 10 

Yu et al., 
2003b 

5.0 mg /kg 
10 days 

NS NS NS NS - 
10 10.0 mg /kg NS NS NS ↓ - 

20.0 mg /kg NS NS NS ↓ - 
Kuwada et 
al., 2006 4 µM 20 µM Single dose ↓ ↓ - - - - 10 

Makita et al., 

2005 2 mg/kg 6 weeks NS NS NS NS - 06 

Grote et al., 
2004 

0.5 mg /kg 
30 days NS ↑ ↑ NS - 

15 
15.0 mg /kg NS ↓ ↓ ↓ - 

Chen et al., 

2008 

0.5 µg /kg  NS - - - -  
5.0 µg /kg 3 days NS - - - - 08 
50.0 µg /kg  ↓ - - - -  

Kim et al., 

2008 

25.0 mg /kg 
Single dose 

NS NS NS NS NS  
50.0 mg /kg NS NS NS NS NS 05 

100.0 mg /kg ↓ NS NS ↓ NS  

Kanimozhi et 

al., 2014 

50.0 ppm /kg/d  NS NS ↓ NS -  
100.0 ppm /kg/d 65 days ↓ ↓ ↓ ↓ - 08 
150.0 ppm /kg/d  ↓ ↓ ↓ ↓ -  

Kanimozhi et 
al., 2017 

50.0 ppm /kg/d  NS - - - -  
100.0 ppm /kg/d 65 days NS - - - - 05 
150.0 ppm /kg/d  ↓ - - - -  

NS = not significant; ↑ = increase; ↓ = decrease; n = number of experiments performed.  

 

According to the work of Wu et al.(33), in adult rats, testosterone levels decreased in a 

TBT dose-dependent manner. Additional analysis showed that TBT significantly increased 

serum LH and FSH levels. After exposure to 15 mgTBT/kg body weight, Grote et al.(32) 

observed a statistically significant decrease in testosterone concentration compared to control, 

while treatment with 0.5 mg TBT/kg body weight did not lead to a significant change in 

testosterone levels. No effect was observed on LH concentration after exposure to 15 mg 

TBT/kg body weight (Table 3). Mitra et al.(17) demonstrated that after exposure to TBT for 6h, 

the amount of testosterone in rats also decreased significantly in a dose-dependent manner. 

Various TBT concentrations (300, 600, and 1000 nM) evaluated were based on reported human 

blood values ranging from 50 to 400 nM(6). According to Kim et al.(36), the serum testosterone 

concentration in mice exposed to 100 mg/kg TBT at the immature stage was reduced to almost 

26% of the value observed in vehicle-exposed animals. A significant decrease in testosterone 

production in pigs was also observed at concentrations between 0.03-0.3 µM TBT(40) (Table 3). 
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In one study conducted by Omura et al.(39), a dose-dependent increase in serum 

testosterone concentration of the TBT diet-treated rats was demonstrated in the F1 generation, 

but serum testosterone concentration did not increase in the F2 generation. Serum LH 

concentrations of the TBT-treated rats did not increase in the F1 generation, but increased dose 

dependently in the F2 generation. Despite the absence of reductions in LH and testosterone 

concentrations, serum 17β-estradiol concentration was decreased in the rats fed with the 125 

ppm TBT diet (Table 3). 

On the other hand, TBT treatments during the pubertal period of rats did not alter serum 

androgen levels(34). Makita et al.(35) also observed no differences in testosterone, LH and FSH 

concentrations in any treated group. 

Chen et al.(38) detected no significant change in testosterone levels in the testes of mice 

compared to control after TBT treatment, despite there was a slight tendency for a dose-

dependent increase. As for 17β-estradiol levels, on the other hand, TBT exposure resulted in a 

decrease in a dose-dependent manner compared to control(38) (Table 3). 

 

Table 3. Hormones serum concentration changes induced by TBT in male mammals obtained 

from screened articles at the level 3.  

 

Author Dose/concentration Treatment 

duration Testosterone FSH LH 17β-

estradiol n 

Wu et al., 

2017 

0.1 mg/kg  ↓ NS NS - 
18 1.0 mg/kg 10 days ↓ ↑ ↑ - 

10.0 mg/kg  ↓ ↑ ↑ - 

Yu et al., 

2003b 

5.0 mg/kg 
10 days 

NS - - - 
10 10.0 mg/kg NS - - - 

20.0 mg /kg NS - - - 
Makita et 
al., 2005 2 mg/kg 6 weeks NS NS NS - 06 

Grote et 

al., 2004 
0.5 mg/kg 

30 days NS - NS - 
15 

15.0 mg/kg ↓ - NS - 

Mitra et al., 

2014 

300 nM 

6 hours 

NS - - -  

1 × 105/ml 
cells  

 

600 nM ↓ - - - 
1000 nM ↓ - - - 
3000 nM ↓ - - - 

Omura et 
al., 2001 

5.0 ppm/kg/d F1 F2 NS NS - NS NS NS NS 14 08 
25.0 ppm/kg/d F1 F2 NS NS - NS NS NS NS 16 13 

125.0 ppm/kg/d F1 F2 ↑ NS - NS ↑ ↓ ↓ 16 10 

Si et al., 

2010 

0.05 mg/kg PND 49 PND 84 NS NS - NS ↓ ↓ NS 
25 

0.5 mg/kg Seven times ↓ 
NS 

 - NS ↓ NS ↑ 

Chen et al., 
2008 

0.5 µg/kg  NS - - NS  
5.0 µg/kg 3 days NS - - NS 08 

50.0 µg/kg  NS - - ↓  
Kim et al., 

2008 
25.0 mg/kg  NS - - NS 

05 
50.0 mg/kg Single dose NS - - NS 
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100.0 mg/kg  ↓ - - NS 

Kanimozhi 
et al., 2014 

50.0 ppm/kg/d  NS - - -  
100.0 ppm/kg/d 65 days ↓ - - - 08 
150.0 ppm /kg/d  ↓ - - -  

Nakajima 

et al., 2003 

0.01 µM 

3 hours 

NS - - - 
6 × 104 

cells/well/ 

200 µl 

0.03 µM ↓ - - - 
0.1 µM ↓ - - - 
0.3 µM ↓ - - - 

Yan et al., 
2018 

10 nM  NS - - NS 12-well 

plates 1 × 

106 cells 

mL−1 

50 nM 48 hours NS - - ↓ 
100 nM  ↑ - - ↓ 

NS = not significant; ↑ = increase; ↓ = decrease; FSH = follicle-stimulating hormone; LH = luteinizing hormone; 

n = number of experiments performed; F = generation; PND = postnatal days. 

 

Rat Leydig cells were stained by Hsd 3β1 biomarker and Sertoli cells were stained by 

Sox9 biomarker. When compared to control, TBT negatively regulated the expression levels of 

Leydig cell genes, Hsd17β3 and Cyp17α1, without affecting StAR levels. TBT at 10 mg/kg 

also reduced the expression levels of Sox9 genes in Sertoli cells, while lower doses of TBT did 

not affect the expression levels of these genes(33)  (Table 4). 

In the study by Mitra et al.(41), the expression of steroidogenic markers in rats, such as 

StAR and Hsd 3β1, was down-regulated at almost all doses, but was only significantly affected 

in the 30 mg TBT group. In another study, relating time of administration, the same group 

showed a significant decline in Hsd 3β1 expression starting at 30min, and over time, levels 

were further suppressed. StAR levels, however, remained unchanged, except at 1h, when there 

was a surge in expression levels(17) (Table 4). 

The mRNA expressions of Cypscc and Cyp17α1 were markedly decreased in the testes 

of mice exposed to 50 and 100 mg/kg TBT. For Hsd 3β1 and Hsd17β3, animals exposed to 100 

mg/kg TBT showed significant reductions in gene expression in the testes compared to the 

vehicle-exposed control(36) (Table 4). 

Steroidogenic acutely regulated proteins (StAR) and other hamster steroidogenic 

enzymes (expressions of Cypscc, Hsd 3β1 and Cyp17α1) were studied by real-time PCR, which 

revealed significantly decreased mRNA expression of StAR, Cypscc, Hsd 3β1 and Cyp17α1, 

all involved in normal testicular function and steroidogenesis. Immunoblotting research showed 

that the expression of StAR, 3β-HSD, Cypscc, Hsd 3β1 and Cyp17α1 was also significantly 

down-regulated in hamsters treated with TBT in a dose-dependent manner compared to 

control(37) (Table 4). 
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Human H295R cells exposed to TBT at 100 nM concentration also reduced the 

expressions of StAR and Hsd 3β1. The enzymes transcribed by these genes play key roles in 

the biosynthesis of steroid hormones in H295R(42) (Table 4).  

 

Table 4. Gene and protein expression changes induced by TBT in male mammals obtained 

from screened articles at the level 3.  

 

Author Dose/concentration Duration StAR Cyp 

scc 
Cyp 

cl7 
Cyp 

17α1 
Hsd 

3β1 
Hsd 

17β3 Sox9 n 

Wu et al. 

(2017) 

0,1 mg / kg  NS - - NS ↓ ↓ NS 

18 1,0 mg / kg 10 days NS - - ↓ ↓ ↓ NS 

10,0 mg / kg  NS - - ↓ ↓ ↓ ↓ 

Mitra et al. 

(2014) 600nM 
30min NS - - - NS - - 

3×106 

cells  1h ↑ - - - ↓ - - 
3h NS - - - ↓ - - 

Mitra et al. 

(2017) 

10,0 mg /kg 
Single 

dose 

NS - - - NS - - 
05 20,0 mg /kg NS - - - NS - - 

30,0 mg /kg ↓ - - - ↓ - - 

Kim et al. 

(2008) 

25,0 mg /kg 
Single 

dose 

- NS - NS NS NS - 
05 50,0 mg /kg - ↓ - ↓ NS NS - 

100,0 mg /kg - ↓ - ↓ ↓ ↓ - 

Kanimozhi 

et al. 

(2017) 

50,0 ppm /kg/d  NS ↓  ↓ ↓ - -  
100,0 ppm /kg/d 65 days ↓ ↓  ↓ ↓ - - 05 
150,0 ppm /kg/d  ↓ ↓  ↓ ↓ - -  

Nakajima 

et al. 

(2005) 
0,1 µM  

 

↓ NS ↓ NS NS - - 03-07 

Yan et al. 
(2018) 

10 nM 

48 hours 

NS - - NS NS NS - 12-well 

   plates 1 × 

106 cells 

mL−1 

50 nM NS - - NS NS NS - 

100 nM ↓ 
- - 

NS ↓ 
NS - 

NS = not significant; ↑ = increase; ↓ = decrease; Cyp = Cytochrome P450; Hsd = hydroxysteroid dehydrogenase; 

Sox9 = SRY-Box transcription factor 9; n = number of experiments performed. 

 

In the study by Yu et al.(43), no histological changes related to TBT compound were 

observed in the testes and prostate of rats in all experimental groups. In the epididymis and 

seminal vesicle, however, microscopic changes were induced by TBT treatments. Increases in 

detached debris and some desquamated cells were observed in the epididymal tubules in treated 

rats compared to control rats. (Table 5). 

In mice exposed to 100 mg/kg TBT, the formation of the lumen of the seminiferous 

tubules was delayed and the total number of germ cells in the tubules in the testes was reduced. 

In addition, the number of cells with pyknotic nuclei and multinucleated bodies increased in the 

tubules of TBT-exposed animals(36). Degenerative changes and desquamation of the 

differentiating cells of the germ layer were also present in the seminiferous tubules of the testes 
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of TBT-treated mice(38). The seminiferous tubules of these animals' testes showed a reduction 

in spermatogenesis. Increases in detached debris and some shredded cells were observed in the 

animals treated with 50 µg/kg TBT(38) (Table 5). 

TBT exposure in rats, performed through the study by Mitra et al.(41), showed the 

development of interstitial edema, along with Leydig cell loss, being evident at all doses. One 

of the most prominent effects of TBT exposure was cell loss, which was most evident on day 

7, indicating disruption in Sertoli cells.  

In hamster testes, on the other hand, TBT treatment resulted in abnormalities such as 

desquamation of epithelial cells, retraction of the outer membrane, presence of vacuoles, 

remnants of dead cells, binucleated giant cells with enlarged nuclei, and granulation of cells. 

The presence of these abnormalities was widely found in the groups treated at the highest 

concentrations (TBT 100 and 150 ppm/kg/d). The maximum number of distorted seminiferous 

epithelium, vacuoles, multinucleated giant cells, and dead cell debris was also demonstrated at 

these TBT doses(24) (Table 5).  

 

Table 5. Histopathological changes induced by TBT in the reproductive organs of male 

mammals obtained from screened articles at the level 3.  

 

Author Dose/ 

concentration 
Treatment 

duration 

 

ST 

 
SV Testis  Prost. Epid. CL  CS  n 

Yu et al., 
2003 

5 mg /kg 
10 days 

- 
alteration 

NS NS 
alteration 

- - 
10 10.0 mg /kg - NS NS - - 

20.0 mg /kg - NS NS - - 

Mitra et 
al., 2017 

10.0 mg /kg 
Dose 
única 

↓ - - - - ↓ ↓ 
05 20.0 mg /kg ↓ - - - - ↓ ↓ 

30.0 mg /kg ↓ - - - - ↓ ↓ 

Chen et 

al., 2008 
0.5 µg /kg 

3 days 
NS - - - - - - 

 

 
5.0 µg /kg NS - - - - - - 

03 
50.0 µg /kg alteration - - - - - - 

Kim et al., 
2008 

25.0 mg /kg 
Single 
dose 

NS - - - - - - 
05 50.0 mg /kg NS - - - - - - 

100.0 mg /kg ↓ - - - - - - 
Kanimozhi 

et al., 

2014 

50.0 ppm /kg/d  NS - - NS - - -  
100.0 ppm /kg/d 65 days alteration - - alteration - - - 08 
150.0 ppm /kg/d  alteration - - alteration - - -  

NS = not significant; ↑ = increase; ↓ = decrease, ST = seminiferous tubule; SV = seminal vesicle; Prost = Prostate; 

Epid = Epididymis; CL = Leydig cells number; CS = Sertoli cells number; n = number of experiments performed. 

 

Sperm counts recovered from the testes of TBT-treated rats and hamsters decreased in 

a dose-dependent manner. There was a change in both daily sperm production and sperm 
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motility(43,24).  A significant decrease in mouse sperm count and viability compared to control 

was also observed (38,42,44). On the other hand, the percentage of abnormal spermatozoa, such as 

highly bent tail, curled tail, small head, unformed head, headless tail, and tailless head was 

increased in a dose-dependent manner(38,42,24) (Table 6). 

In a two-generation study, sperm counts decreased significantly to approximately 80% 

of the control value in the F2 generation. However, sperm motility and morphology were not 

affected by TBT treatment in any experimental group(39) (Table 6). 

 

Table 6. Spermatic parameters changes induced by TBT in male mammals obtained from 

screened articles at the level 3.  
 

Author Dose/concentration Treatmant 
duration 

Sperm 
count 

Spermatid 
count Motility Sperm 

abnormality Viability n 

Yu et al., 

2003 

5 mg /kg  NS - NS - - 
10 10.0 mg /kg 10 days ↓ - NS - - 

20.0 mg /kg  ↓ - ↓ - - 
Makita et 

al., 2005 2 mg/kg 6 weeks NS - - - - 06 

Omura et 

al., 2001 

0.4 mg / kg F1 F2 NS NS NS NS NS NS NS NS - 14 08 
2.0 mg / kg F1 F2 NS NS NS ↓ NS NS NS NS - 16 13 
10.0 mg / kg F1 F2 NS ↓ ↓ ↓ NS NS NS NS - 16 10 

Chen et al., 
2008 

0.5 µg /kg  ↓ - - NS ↓  
5.0 µg /kg 3 days ↓ - - ↑ ↓ 08 
50.0 µg /kg  ↓ - - ↑ ↓  

Yan et al., 
2009 

0.5 µg /kg  ↓ - - ↑ NS  
5.0 µg /kg 3 ou 45 ↓ - - ↑ NS 06 
50.0 µg /kg  ↓ - - ↑ ↓  

Kumasaka 
et al., 2002 

0.4 mg /kg  NS - - - -  
2.0 mg /kg 6 weeks ↓ - - - - 06 

10.0 mg /kg  ↓ - - - -  

Kanimozhi 
et al., 2014 

50.0 ppm /kg/d  NS - NS NS -  
100.0 ppm /kg/d 65 days ↓ - ↓ ↑ - 08 
150.0 ppm /kg/d  ↓ - ↓ ↑ -  

NS = not significant; ↑ = increase; ↓ = decrease, n = number of experiments performeds.  

 

DISCUSSION 

There are some reports that high concentrations of organotin compounds have 

accumulated in marine organisms due to such possible causes as biological accumulation(45). 

For instance, TBT average concentration in oysters in the United Kingdom was found to be 

16.7 µg/g, and their biological concentration factor is approximately 10,000(46).  TBT average 

concentration in fish and shellfish purchased from retail markets in Niigata, Japan was 0.669 

µg/g(47).  TBT average concentration in Pacific oysters in Chinhae Bay, Korea was reported to 
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be 0.095–0.885 µg Sn/g and it was also reported that TBT could be biologically concentrated 

in oysters up to 25,000 times(48). TBT average concentration in 11 kinds of fish in the ports of 

Osaka and Yodo River, Japan was reported to be 0.011–0.082 µg/g wet weight(49). 

Most studies have focussed on marine species, yet due to drinking water contamination and 

consumption of seafoods from TBT contaminated waters, mammals can be exposed to 

significant quantities of TBT. Based on immunotoxicity studies, the tolerable daily intake of 

TBT for humans has been set at 0.25ug/kg body weight (50). 

Male infertility is one of the challenging problems encountered by human society 

worldwide. Reports indicate the involvement of several environmental factors in inducing this 

problem(51). There are scarcely reports identifying effects of TBT compounds on reproductive 

system of male mammals, mainly humans(34). 

In the literature, it has been reported that high levels of TBT have been detetected in 

human liver tissue and human blood samples. For example, total TBT concentrations in human 

livers collected from Poland were in the range of 2.4–11 ng/g wet wt(52), and concentrations of 

butyltin in the livers of Japanese were in the range of 59–96 ng/g wet wt (53). Sanocka and 

Kurpisz (2003)(54) stated that 20% of couples are infertile in Poland, and 40-60% of those 

couples’ cases are due to male factor alone, whereas a more recente study by Bablok  et al. 

(2011)(55) states that 56% of infertility cases are due to an involved male factor. Kannan et al. 

(1999)(56) also reported tributyltin levels in the human blood collected from U.S.A. were up to 

8.18 ng/ml. North America demonstrates rates of male infertility 4.5-6%(57). While a calculated 

percentage reveals 4.5-6% of North American males are infertile, the Centers for Disease 

Control (CDC) estimates that 9.4% of males in the United States are infertile(58). In general, 

among Asian and Oceanian countries, the maximum estimated butyltin intake was 3.8 

µg/(person day)(59). Australia’s rates infertility are similar to those in North America and the 

United States, at 8-9%; additionally, 40% of infertility cases in Australia are due to male factor 

involvement(60). 

There is increasing evidence that normal male reproductive function can be disrupted 

by exposure to environmental pollutants that mimic or antagonize endogenous sex hormone 

function(61,62) . In addition to some known endocrine disruptors (such as bisphenol A, phthalates 

and polychlorinated biphenyls), organotin compounds such as TBT have also been reported to 

interfere with the endocrine system(63). 
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The influences experienced by the male and female reproductive organs of sex 

hormones in relation to endocrine disruptors include changes in the weight of the ovaries(47) and 

testes(39). Regarding male reproductive organs, most studies in this review showed no 

differences in testes weight between groups treated with low doses of TBT(33,34,35,32,36,24,37), but 

with reduced weight in higher TBT ranges (38,36,24,37). 

The weight of the testes varies with the amount of differentiated spermatogenic cells, so 

a decrease in organ weight may suggest a reduction in sperm production(64). Furthermore, 

several studies indicate that inhibition of the aromatase enzyme by TBT, generates a "hyper-

androgenic" status in male mammals(65,66,67), which also entails a reduction in testes weight (68). 

O’Connor et al (1998)(69) elucidated a decrease in seminal vesicle and prostate weights 

after treatment with finasteride, an inhibitor of the 5α-reductase that converts testosterone to 

dihydrostostostosterone, and with anstrozol, an aromatase inhibitor that converts testosterone 

and androstenedione to 17β-estradiol and estrone, respectively, demonstrating that TBT inhibits 

the activities of human 5α-reductase(70) and aromatase(71), results that cororoborate with the 

work of Yu et al.(34) and Omura et al.(39). Thus, the decreases in prostate and seminal vesicle 

weights in these studies were likely induced by the inhibition activity of TBT for 5α-reductase 

and aromatase. 

 In the study by Grote et al.(32) the increase in prostate and epidymis weight observed in 

the 0.5 mg group and the decrease observed in the 15 mg TBT group are apparently opposite 

effects. However, within the field of endocrine disruption, such effects often occur and are 

controversial. 

It is well known that the progression of sexual maturation is endocrine mediated and the 

onset of puberty in the male rat is triggered within the central nervous system with the testes 

playing a key role(32).  Leydig cells (LCs) and Sertoli cells (SCs) are responsible for testicular 

development and normal spermatogenesis(72,73).  In the testes, spermatogenesis is under the 

control of two gonadotrophins, follicle stimulating hormone (FSH) and luteinizing hormone 

(LH)(74,75). 

FSH acts directly on SCs promoting spermatogenesis while LH induces testosterone 

production in Leydig cells. Sertoli cells express both the FSH receptor (FSHR) and the 

androgen receptor (AR), thus integrating androgen and FSH signaling(76). FSH concentrations 

increase steadily after birth, which promotes SC proliferation and induces AR expression in 
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these cells(77,78,79). In addition, the concentration of FSH and testosterone are increased at 

puberty and increases the expression of AR, which is essential for the final maturation of 

SCs(79). After binding to hormones, AR translocates to the nucleus where it regulates 

transcription of androgen responsive genes. 

Serum LH levels during puberty are controversial, with some studies reporting an 

increase in LH during puberty(80,81), others have found no change in LH levels throughout (82,83). 

While some antiandrogenic substances result in an increase in serum LH and testosterone levels 

others decreased(84,39) or did not alter testosterone and/or LH concentrations(85). 

When it comes to serum hormone concentration, most studies have shown that 

testosterone levels in mice and pigs decreased in a TBT dose-dependent manner(33,32,17,36,40). 

Additional analysis showed that TBT treatment significantly increased serum LH and FSH 

levels(32,39), while reducing to 17β-estradiol levels compared to control(39,39). 

The antiandrogenic properties are mediated by different mechanisms. While some 

chemicals cause pubertal changes through antagonistic binding to the androgen receptor, others 

disrupt hypothalamic-pituitary function, steroid hormone synthesis or metabolism(32).   

The production of sex steroid hormones in mammals results from a pathway involving 

both cytochrome P450 enzymes, which are mixed-function oxidases and steroid 

dehydrogenases. Gonadal androgen production is important in males for brain masculinization 

(86), androgen target tissue function(87) and spermatogenesis(88). 

As reported, TBT causes damage to many organs, including the testes, and the Leydig 

cell is also a target of TBT.  The LCs of the testes has the ability to synthesize testosterone from 

cholesterol(89). Testosterone biosynthesis depends on several steroidogenic enzymes. 

Steroidogenic acute regulatory protein (StAR) is required for the transport of cholesterol to the 

mitochondrial membrane. Additional conversions of cholesterol to testosterone occurring 

through mitochondria to the smooth endoplasmic reticulum are catalyzed by the cholesterol 

side chain cleavage enzyme (Cyp scc), 3β-hydroxysteroid dehydrogenase (3β-HSD), 17β-

hydroxysteroid dehydrogenase (17β-HSD) and Cyp17α.  

Leydig cells also express aromatase P450 (Cyp), which catalyzes the aromatization of 

testosterone into estradiol(89). Since differentiation of adult Leydig cells during the immature 

stage is crucial for testosterone production in adulthood, it is important to clarify the inhibitory 

effects of TBT exposure on steroidogenesis during this developmental stage(36). 
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Kim et al. (2008)(36) demonstrated association of TBT with induced apoptosis of 

testicular germ cells in mice and inhibition of steroidogenesis by reduced expression of 

steroidogenic enzymes in interstitial Leydig cells. 

Decreased expression of steroidogenic acute regulatory protein (StAR)(41,37,42) also 

results in the inhibition of steroidogenesis, as StAR mediates the limiting step in 

steroidogenesis. Reduced levels of 3β-HSD, on the other hand, may be a causal factor for 

decreased testosterone production(33,17,41,36,40). 

Significant degenerative changes and shedding of differentiating cells of the germ layer 

were found in the seminiferous tubules of the testes of TBT-treated mice. Increases of detached 

debris and some shredded cells were observed, whereas these testicular changes were not 

reported in some TBT treatment experiments(43,34,35). Ingestion of TBT from adult male rats in 

a two-generation toxicity study induced mild testicular histological changes that were 

vacuolization of the seminiferous epithelium, retention of spermatids in the epithelium, delayed 

spermiation, and germ cell degeneration(39). 

The homeostasis of the seminiferous epithelium depends on cell death and proliferative 

activity of the epithelium, and any imbalance of the two processes can result in histological 

changes(90). Proliferating protein nuclear antigen (PCNA) is essential for several cell cycle 

pathways, such as the initiation of DNA replication(91). It has been proposed that PCNA is a 

useful molecular marker to assess germ cell kinetics(92) and the intensity of labeling could assess 

testes spermatogenic function, including cell proliferation(93). Kishta et al. (2006)(94) 

demonstrated that TBT is an inhibitor of protein synthesis, and is possibly able to increase the 

expression of a number of gene stress responses that lead to lower PCNA expression. Organotin 

compounds have induced significant delay in cell kinetics(95), inhibited DNA synthesis of spleen 

cells in mice(96) and decreased proliferation of human B lymphocytes(97). It is reasonable to 

assume that not only one, but several factors are involved in the mutagen-induced delay in the 

cell cycle.  

Delayed lumen formation in the seminiferous tubules and a reduction in the total number 

of germ cells were seen in TBT-exposed animals compared to vehicle-exposed animals. Several 

multinucleated bodies and cells with pyknotic nuclei in the tubules were also observed, and data 

from in situ TUNEL analysis indicated that these testicular germ cells underwent apoptosis after 

TBT exposure(36). Jurkiewicz et al. (2004)(98) showed the involvement of mitochondrial and 
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receptor pathways in TBT-induced apoptosis in rat hepatocytes. These pathways are also known 

to play important roles in spontaneous and heat- or chemical-induced apoptosis in testicular 

germ cells(99,100). 

TBT treatment also produced histological changes in the seminal vesicle of adult rats 

such as vacuolization of the seminiferous epithelium, retention of spermatids in the epithelium, 

delayed spermiation, and degeneration of germ cells. The epithelium of the epididymal head 

showed the normal, but disturbances characterized by increments of detached debris and some 

desquamated cells thought to originate from seminiferous tubules of the testes were detected(43). 

TBT exposures caused a significant reduction in both sperm count and sperm motility 

compared to control(43,39,38,23,44,24). Haubruge et al. (2000)(61) reported that TBT exposure to 

adult male guppies caused a significant decline in total sperm count. This decline was not due 

to endocrine system-mediated alteration, but in vivo interference with normal Sertoli cell 

function(101). 

After exposures of 0.27 to 27.0 µg/L for 24 hours to African catfish spermatozoa a 

significant decrease in the duration and intensity of sperm motility was observed(86). The 

decrease in sperm motility was probably associated with an instantaneous decrease in ATP 

content and simultaneous increase in AMP content following exposure in catfish semen to TBT. 

An exposure to 2.7 µg/L for 24 hours in carp also caused a significant reduction in sperm 

motility, but no change in adenylate concentrations(86). 

On the other hand, spermatozoa with morphological abnormalities observed in treated 

animals suggest that TBT may cause a spermatotoxic effect(38,42,24). The increased frequency of 

abnormalities, such as highly bent tail, curled tail, small head, unformed head, headless tail, and 

tailless head, can impair sperm motility, affecting male fertility(102). Since the chemical 

composition of epididymal tissue fluid plays an important role in both sperm maturation and 

storage, it is possible that chemicals, such as organotin biocidal compounds, could disrupt these 

processes and produce toxic effects(103).  

CONCLUSION 

In conclusion, TBT exposure to male animals produces several reproductive disorders. 

Decreased weight of the testicles, epididymis, prostate and seminal vesicle were observed at 

higher TBT ranges, according to the articles surveyed. In some studies, decreased serum 
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testosterone levels were reported, with some histological changes in the surveyed tissues, as 

well as decreased transcriptional expressions of steroidogenic enzymes. Importantly, there were 

significant reductions in sperm count and motility and increased abnormalities, perhaps due to 

its direct effect on accessory sex organs and spermatogenesis.  

Further studies are needed to elucidate the precise mode of its deleterious mechanisms 

of action on the spermatogenesis process. It is theorized that the androgenic effects of TBT are 

mediated by inhibition of the aromatase activity of cytochrome P450 and 5α-reductase. This is 

of special interest because high levels of tributyltin have been detected in human blood samples. 

Therefore, a comprehensive survey of TBT levels in food and water sources should also 

be conducted in order to better protect susceptible populations from potentially deleterious 

reproductive effects. 
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